Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Case-Only Survival Analysis Reveals Unique Effects of Genotype, Sex, and Coronary Disease Severity on Survivorship.

  • Jennifer R Dungan‎ et al.
  • PloS one‎
  • 2016‎

Survival bias may unduly impact genetic association with complex diseases; gene-specific survival effects may further complicate such investigations. Coronary artery disease (CAD) is a complex phenotype for which little is understood about gene-specific survival effects; yet, such information can offer insight into refining genetic associations, improving replications, and can provide candidate genes for both mortality risk and improved survivorship in CAD. Building on our previous work, the purpose of this current study was to: evaluate LSAMP SNP-specific hazards for all-cause mortality post-catheterization in a larger cohort of our CAD cases; and, perform additional replication in an independent dataset. We examined two LSAMP SNPs-rs1462845 and rs6788787-using CAD case-only Cox proportional hazards regression for additive genetic effects, censored on time-to-all-cause mortality or last follow-up among Caucasian subjects from the Catheterization Genetics Study (CATHGEN; n = 2,224) and the Intermountain Heart Collaborative Study (IMHC; n = 3,008). Only after controlling for age, sex, body mass index, histories of smoking, type 2 diabetes, hyperlipidemia and hypertension (HR = 1.11, 95%CI = 1.01-1.22, p = 0.032), rs1462845 conferred significantly increased hazards of all-cause mortality among CAD cases. Even after controlling for multiple covariates, but in only the primary cohort, rs6788787 conferred significantly improved survival (HR = 0.80, 95% CI = 0.69-0.92, p = 0.002). Post-hoc analyses further stratifying by sex and disease severity revealed replicated effects for rs1462845: even after adjusting for aforementioned covariates and coronary interventional procedures, males with severe burden of CAD had significantly amplified hazards of death with the minor variant of rs1462845 in both cohorts (HR = 1.29, 95% CI = 1.08-1.55, p = 0.00456; replication HR = 1.25, 95% CI = 1.05-1.49, p = 0.013). Kaplan-Meier curves revealed unique cohort-specific genotype effects on survival. Additional analyses demonstrated that the homozygous risk genotype ('A/A') fully explained the increased hazard in both cohorts. None of the post-hoc analyses in control subjects were significant for any model. This suggests that genetic effects of rs1462845 on survival are unique to CAD presence. This represents formal, replicated evidence of genetic contribution of rs1462845 to increased risk for all-cause mortality; the contribution is unique to CAD case status and specific to males with severe burden of CAD.


Genome-wide association study of acute kidney injury after coronary bypass graft surgery identifies susceptibility loci.

  • Mark Stafford-Smith‎ et al.
  • Kidney international‎
  • 2015‎

Acute kidney injury (AKI) is a common, serious complication of cardiac surgery. Since prior studies have supported a genetic basis for postoperative AKI, we conducted a genome-wide association study (GWAS) for AKI following coronary bypass graft (CABG) surgery. The discovery data set consisted of 873 nonemergent CABG surgery patients with cardiopulmonary bypass (PEGASUS), while a replication data set had 380 cardiac surgical patients (CATHGEN). Single-nucleotide polymorphism (SNP) data were based on Illumina Human610-Quad (PEGASUS) and OMNI1-Quad (CATHGEN) BeadChips. We used linear regression with adjustment for a clinical AKI risk score to test SNP associations with the postoperative peak rise relative to preoperative serum creatinine concentration as a quantitative AKI trait. Nine SNPs meeting significance in the discovery set were detected. The rs13317787 in GRM7|LMCD1-AS1 intergenic region (3p21.6) and rs10262995 in BBS9 (7p14.3) were replicated with significance in the CATHGEN data set and exhibited significantly strong overall association following meta-analysis. Additional fine mapping using imputed SNPs across these two regions and meta-analysis found genome-wide significance at the GRM7|LMCD1-AS1 locus and a significantly strong association at BBS9. Thus, through an unbiased GWAS approach, we found two new loci associated with post-CABG AKI providing new insights into the pathogenesis of perioperative AKI.


Lack of Association of a Functional Polymorphism in the Serotonin Receptor Gene With Body Mass Index and Depressive Symptoms in a Large Meta-Analysis of Population Based Studies.

  • Beverly H Brummett‎ et al.
  • Frontiers in genetics‎
  • 2018‎

The serotonin receptor 5-HTR2C is thought to be involved in the function of multiple brain structures. Consequently, the HTR2C gene has been studied extensively with respect to its association with a variety of phenotypes. One coding variant in the HTR2C gene, Cys23Ser (rs6318), has been associated with depressive symptoms. and adiposity; however, these findings have been inconsistent. The reasons for this mixed picture may be due to low statistical power or due to other factors such as failure to account for possible interacting environmental factors, such as psychosocial stress. Further, the literature around this polymorphism is marked by limited inclusion of persons of African ancestry. The present study sought to overcome these limitations and definitively determine the relationship of this polymorphism with depressive and obesity phenotypes in a large sample meta-analysis. Thus, we harmonized individual level data from 10 studies including the Women's Health Initiative, CARDIA, ARIC, Framingham Offspring, and the Jackson Heart Study, resulting in a sample of 27,161 individuals (10,457 Black women, 2,819 Black men, 7,419 White women, and 6,466 White men). We conducted a random effects meta-analysis using individual level data to examine whether the Cys23Ser variant-either directly, or conditionally depending on the level of psychosocial stress-was associated with depressive symptoms and body mass index (BMI). We found that psychosocial stress was associated with both depression and BMI, but that Cys23Ser was not directly associated with, nor did it modify the associations of psychosocial stress with depression or BMI. Thus, in the largest study of this polymorphism, we have determined that rs6318 is not associated with depression, or BMI.


No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis.

  • Christina Loley‎ et al.
  • Scientific reports‎
  • 2016‎

In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD.


Atherogenic Lipoprotein Determinants of Cardiovascular Disease and Residual Risk Among Individuals With Low Low-Density Lipoprotein Cholesterol.

  • Patrick R Lawler‎ et al.
  • Journal of the American Heart Association‎
  • 2017‎

Levels of LDL (low-density lipoprotein) cholesterol in the population are declining, and increasing attention is being focused on residual lipid-related pathways of atherosclerotic cardiovascular disease risk beyond LDL cholesterol. Among individuals with low (<130 mg/dL) LDL cholesterol, we undertook detailed profiling of circulating atherogenic lipoproteins in relation to incident cardiovascular disease in 2 populations.


Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis.

  • Barbara Schormair‎ et al.
  • The Lancet. Neurology‎
  • 2017‎

Restless legs syndrome is a prevalent chronic neurological disorder with potentially severe mental and physical health consequences. Clearer understanding of the underlying pathophysiology is needed to improve treatment options. We did a meta-analysis of genome-wide association studies (GWASs) to identify potential molecular targets.


Genome-wide linkage analysis of cardiovascular disease biomarkers in a large, multigenerational family.

  • Daniel Nolan‎ et al.
  • PloS one‎
  • 2013‎

Given the importance of cardiovascular disease (CVD) to public health and the demonstrated heritability of both disease status and its related risk factors, identifying the genetic variation underlying these susceptibilities is a critical step in understanding the pathogenesis of CVD and informing prevention and treatment strategies. Although one can look for genetic variation underlying susceptibility to CVD per se, it can be difficult to define the disease phenotype for such a qualitative analysis and CVD itself represents a convergence of diverse etiologic pathways. Alternatively, one can study the genetics of intermediate traits that are known risk factors for CVD, which can be measured quantitatively. Using the latter strategy, we have measured 21 cardiovascular-related biomarkers in an extended multigenerational pedigree, the CARRIAGE family (Carolinas Region Interaction of Aging, Genes, and Environment). These biomarkers belong to inflammatory and immune, connective tissue, lipid, and hemostasis pathways. Of these, 18 met our quality control standards. Using the pedigree and biomarker data, we have estimated the broad sense heritability (H2) of each biomarker (ranging from 0.09-0.56). A genome-wide panel of 6,015 SNPs was used subsequently to map these biomarkers as quantitative traits. Four showed noteworthy evidence for linkage in multipoint analysis (LOD score ≥ 2.6): paraoxonase (chromosome 8p11, 21), the chemokine RANTES (22q13.33), matrix metalloproteinase 3 (MMP3, 17p13.3), and granulocyte colony stimulating factor (GCSF, 8q22.1). Identifying the causal variation underlying each linkage score will help to unravel the genetic architecture of these quantitative traits and, by extension, the genetic architecture of cardiovascular risk.


Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5.

  • Daniel K Nolan‎ et al.
  • BMC genetics‎
  • 2012‎

Coronary artery disease (CAD), and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C). Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals) from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage) and less dense spacing (one SNP per 50 kb) for the flanking regions (117.7-126.6 and 160.2-167.5 MB) and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN) and the quantitative trait transmission disequilibrium test (QTDT; GENECARD). SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype) using linkage and association in the presence of linkage (APL; GENECARD) and logistic regression (CATHGEN and aortas).


Evaluating the precision of EBF1 SNP x stress interaction association: sex, race, and age differences in a big harmonized data set of 28,026 participants.

  • Abanish Singh‎ et al.
  • Translational psychiatry‎
  • 2020‎

In prior work, we identified a novel gene-by-stress association of EBF1's common variation (SNP rs4704963) with obesity (i.e., hip, waist) in Whites, which was further strengthened through multiple replications using our synthetic stress measure. We now extend this prior work in a precision medicine framework to find the risk group using harmonized data from 28,026 participants by evaluating the following: (a) EBF1 SNPxSTRESS interaction in Blacks; (b) 3-way interaction of EBF1 SNPxSTRESS with sex, race, and age; and (c) a race and sex-specific path linking EBF1 and stress to obesity to fasting glucose to the development of cardiometabolic disease risk. Our findings provided additional confirmation that genetic variation in EBF1 may contribute to stress-induced human obesity, including in Blacks (P = 0.022) that mainly resulted from race-specific stress due to "racism/discrimination" (P = 0.036) and "not meeting basic needs" (P = 0.053). The EBF1 gene-by-stress interaction differed significantly (P = 1.01e-03) depending on the sex of participants in Whites. Race and age also showed tentative associations (Ps = 0.103, 0.093, respectively) with this interaction. There was a significant and substantially larger path linking EBF1 and stress to obesity to fasting glucose to type 2 diabetes for the EBF1 minor allele group (coefficient = 0.28, P = 0.009, 95% CI = 0.07-0.49) compared with the same path for the EBF1 major allele homozygotes in White females and also a similar pattern of the path in Black females. Underscoring the race-specific key life-stress indicators (e.g., racism/discrimination) and also the utility of our synthetic stress, we identified the potential risk group of EBF1 and stress-induced human obesity and cardiometabolic disease.


Altered branched-chain α-keto acid metabolism is a feature of NAFLD in individuals with severe obesity.

  • Thomas Grenier-Larouche‎ et al.
  • JCI insight‎
  • 2022‎

Hepatic de novo lipogenesis is influenced by the branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BCKDK). Here, we aimed to determine whether circulating levels of the immediate substrates of BCKDH, the branched-chain α-keto acids (BCKAs), and hepatic BCKDK expression are associated with the presence and severity of nonalcoholic fatty liver disease (NAFLD). Eighty metabolites (3 BCKAs, 14 amino acids, 43 acylcarnitines, 20 ceramides) were quantified in plasma from 288 patients with bariatric surgery with severe obesity and scored liver biopsy samples. Metabolite principal component analysis factors, BCKAs, branched-chain amino acids (BCAAs), and the BCKA/BCAA ratio were tested for associations with steatosis grade and presence of nonalcoholic steatohepatitis (NASH). Of all analytes tested, only the Val-derived BCKA, α-keto-isovalerate, and the BCKA/BCAA ratio were associated with both steatosis grade and NASH. Gene expression analysis in liver samples from 2 independent bariatric surgery cohorts showed that hepatic BCKDK mRNA expression correlates with steatosis, ballooning, and levels of the lipogenic transcription factor SREBP1. Experiments in AML12 hepatocytes showed that SREBP1 inhibition lowered BCKDK mRNA expression. These findings demonstrate that higher plasma levels of BCKA and hepatic expression of BCKDK are features of human NAFLD/NASH and identify SREBP1 as a transcriptional regulator of BCKDK.


Epigenome-Wide Association Study for All-Cause Mortality in a Cardiovascular Cohort Identifies Differential Methylation in Castor Zinc Finger 1 (CASZ1).

  • Jawan W Abdulrahim‎ et al.
  • Journal of the American Heart Association‎
  • 2019‎

Background DNA methylation is implicated in many chronic diseases and may contribute to mortality. Therefore, we conducted an epigenome-wide association study (EWAS) for all-cause mortality with whole-transcriptome data in a cardiovascular cohort (CATHGEN [Catheterization Genetics]). Methods and Results Cases were participants with mortality≥7 days postcatheterization whereas controls were alive with≥2 years of follow-up. The Illumina Human Methylation 450K and EPIC arrays (Illumina, San Diego, CA) were used for the discovery and validation sets, respectively. A linear model approach with empirical Bayes estimators adjusted for confounders was used to assess difference in methylation (Δβ). In the discovery set (55 cases, 49 controls), 25 629 (6.5%) probes were differently methylated (P<0.05). In the validation set (108 cases, 108 controls), 3 probes were differentially methylated with a false discovery rate-adjusted P<0.10: cg08215811 (SLC4A9; log2 fold change=-0.14); cg17845532 (MATK; fold change=-0.26); and cg17944110 (castor zinc finger 1 [CASZ1]; FC=0.26; P<0.0001; false discovery rate-adjusted P=0.046-0.080). Meta-analysis identified 6 probes (false discovery rate-adjusted P<0.05): the 3 above, cg20428720 (intergenic), cg17647904 (NCOR2), and cg23198793 (CAPN3). Messenger RNA expression of 2 MATK isoforms was lower in cases (fold change=-0.24 [P=0.007] and fold change=-0.61 [P=0.009]). The CASZ1, NCOR2, and CAPN3 transcripts did not show differential expression (P>0.05); the SLC4A9 transcript did not pass quality control. The cg17944110 probe is located within a potential regulatory element; expression of predicted targets (using GeneHancer) of the regulatory element, UBIAD1 (P=0.01) and CLSTN1 (P=0.03), were lower in cases. Conclusions We identified 6 novel methylation sites associated with all-cause mortality. Methylation in CASZ1 may serve as a regulatory element associated with mortality in cardiovascular patients. Larger studies are necessary to confirm these observations.


Metabolites and diabetes remission after weight loss.

  • Lydia Coulter Kwee‎ et al.
  • Nutrition & diabetes‎
  • 2021‎

There is marked heterogeneity in the response to weight loss interventions with regards to weight loss amount and metabolic improvement. We sought to identify biomarkers predictive of type 2 diabetes remission and amount of weight loss in individuals with severe obesity enrolled in the Longitudinal Assessment of Bariatric Surgery (LABS) and the Look AHEAD (Action for Health in Diabetes) studies. Targeted mass spectrometry-based profiling of 135 metabolites was performed in pre-intervention blood samples using a nested design for diabetes remission over five years (n = 93 LABS, n = 80 Look AHEAD; n = 87 remitters), and for extremes of weight loss at five years (n = 151 LABS; n = 75 with high weight loss). Principal components analysis (PCA) was used for dimensionality reduction, with PCA-derived metabolite factors tested for association with both diabetes remission and weight loss. Metabolic markers were tested for incremental improvement to clinical models, including the DiaRem score. Two metabolite factors were associated with diabetes remission: one primarily composed of branched chain amino acids (BCAA) and tyrosine (odds ratio (95% confidence interval) [OR (95% CI)] = 1.4 [1.0-1.9], p = 0.045), and one with betaine and choline (OR [95% CI] = 0.7 [0.5-0.9], p = 0.02).These results were not significant after adjustment for multiple tests. Inclusion of these two factors in clinical models yielded modest improvements in model fit and performance: in a constructed clinical model, the C-statistic improved from 0.87 to 0.90 (p = 0.02), while the net reclassification index showed improvement in prediction compared to the DiaRem score (NRI = 0.26, p = 0.0013). No metabolite factors associated with weight loss at five years. Baseline levels of metabolites in the BCAA and trimethylamine-N-oxide (TMAO)-microbiome-related pathways are independently and incrementally associated with sustained diabetes remission after weight loss interventions in individuals with severe obesity. These metabolites could serve as clinically useful biomarkers to identify individuals who will benefit the most from weight loss interventions.


Heart Failure Strategically Focused Research Network: Summary of Results and Future Directions.

  • G Michael Felker‎ et al.
  • Journal of the American Heart Association‎
  • 2022‎

Heart failure remains among the most common and morbid health conditions. The Heart Failure Strategically Focused Research Network (HF SFRN) was funded by the American Heart Association to facilitate collaborative, high-impact research in the field of heart failure across the domains of basic, clinical, and population research. The Network was also charged with developing training opportunities for young investigators. Four centers were funded in 2016: Duke University, University of Colorado, University of Utah, and Massachusetts General Hospital-University of Massachusetts. This report summarizes the aims of each center and major research accomplishments, as well as training outcomes from the HF SFRN.


Comparison of Exogenous Ketone Administration Versus Dietary Carbohydrate Restriction on Myocardial Glucose Suppression: A Crossover Clinical Trial.

  • Senthil Selvaraj‎ et al.
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine‎
  • 2022‎

The ketogenic diet (KD) is the standard of care to achieve myocardial glucose suppression (MGS) for assessing inflammation using 18F-FDG PET. However, failure to suppress physiologic glucose uptake remains a significant diagnostic barrier. Although extending the duration of KD may be effective, exogenously delivered ketones may provide a convenient, reliable, and same-day alternative. The aims of our study were to determine whether exogenous ketone administration is noninferior to the KD to achieve MGS and whether serum β-hydroxybutyrate (BHB) levels can predict MGS. Methods: KEETO-CROSS (Ketogenic Endogenous versus Exogenous Therapies for myoCaRdial glucOse SuppresSion) is a crossover, noninferiority trial of the KD (endogenous ketosis) versus ketone ester ([KE] exogenous ketosis) drink. Twenty healthy participants were enrolled into 3 arms: weight-based KE drink, 24-h KD, and 72-h KD (n = 18 completed all arms). The primary outcome was achievement of complete MGS on PET (noninferiority margin 5%). The area under receiver-operating-characteristics (AUROC) of endogenous BHB levels (analyzed in a laboratory and by point-of-care device) for predicting MGS was analyzed in 37 scans completed on the KD. Results: The mean age was 30 ± 7 y, 50% were women, and 45% were nonwhite. The median achieved BHB levels (mmol/L) were 3.82 (25th-75th percentile, 2.55-4.97) (KE drink), 0.77 (25th-75th percentile, 0.58-1.02) (25th-75th percentile, 24-h KD), and 1.30 (25th-75th percentile, 0.80-2.24) (72-h KD). The primary outcome was achieved in 44% (KE drink), 78% (24-h KD), and 83% (72-h KD) of participants (noninferiority P = 0.97 and 0.98 for KE vs. 24-h and 72-h KD). Endogenous BHB levels robustly predicted MGS (AUROC, 0.88; 95% CI 0.71, 1.00). A BHB of 0.58 or more correctly classified 92% of scans. A point-of-care device provided comparable predictive value. Conclusion: In healthy volunteers, KE was inferior to KD for achieving MGS. Serum BHB is a highly predictive biomarker for MGS and can be clinically implemented upstream of 18F-FDG PET, with rapid facilitation by point-of-care testing, to reduce false-positive scans.


Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women.

  • Kim M Huffman‎ et al.
  • Diabetes care‎
  • 2009‎

To determine whether circulating metabolic intermediates are related to insulin resistance and beta-cell dysfunction in individuals at risk for type 2 diabetes.


A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance.

  • Christopher B Newgard‎ et al.
  • Cell metabolism‎
  • 2009‎

Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA), or standard chow (SC) diets. Despite having reduced food intake and a low rate of weight gain equivalent to the SC group, HF/BCAA rats were as insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1Ser307 and by accumulation of multiple acylcarnitines in muscle, and it was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance.


High heritability of metabolomic profiles in families burdened with premature cardiovascular disease.

  • Svati H Shah‎ et al.
  • Molecular systems biology‎
  • 2009‎

Integration of genetic and metabolic profiling holds promise for providing insight into human disease. Coronary artery disease (CAD) is strongly heritable, but the heritability of metabolomic profiles has not been evaluated in humans. We performed quantitative mass spectrometry-based metabolic profiling in 117 individuals within eight multiplex families from the GENECARD study of premature CAD. Heritabilities were calculated using variance components. We found high heritabilities for amino acids (arginine, ornithine, alanine, proline, leucine/isoleucine, valine, glutamate/glutamine, phenylalanine and glycine; h(2)=0.33-0.80, P=0.005-1.9 x 10(-16)), free fatty acids (arachidonic, palmitic, linoleic; h(2)=0.48-0.59, P=0.002-0.00005) and acylcarnitines (h(2)=0.23-0.79, P=0.05-0.0000002). Principal components analysis was used to identify metabolite clusters. Reflecting individual metabolites, several components were heritable, including components comprised of ketones, beta-hydroxybutyrate and C2-acylcarnitine (h(2)=0.61); short- and medium-chain acylcarnitines (h(2)=0.39); amino acids (h(2)=0.44); long-chain acylcarnitines (h(2)=0.39) and branched-chain amino acids (h(2)=0.27). We report a novel finding of high heritabilities of metabolites in premature CAD, establishing a possible genetic basis for these profiles. These results have implications for understanding CAD pathophysiology and genetics.


GATA2 is associated with familial early-onset coronary artery disease.

  • Jessica J Connelly‎ et al.
  • PLoS genetics‎
  • 2006‎

The transcription factor GATA2 plays an essential role in the establishment and maintenance of adult hematopoiesis. It is expressed in hematopoietic stem cells, as well as the cells that make up the aortic vasculature, namely aortic endothelial cells and smooth muscle cells. We have shown that GATA2 expression is predictive of location within the thoracic aorta; location is suggested to be a surrogate for disease susceptibility. The GATA2 gene maps beneath the Chromosome 3q linkage peak from our family-based sample set (GENECARD) study of early-onset coronary artery disease. Given these observations, we investigated the relationship of several known and novel polymorphisms within GATA2 to coronary artery disease. We identified five single nucleotide polymorphisms that were significantly associated with early-onset coronary artery disease in GENECARD. These results were validated by identifying significant association of two of these single nucleotide polymorphisms in an independent case-control sample set that was phenotypically similar to the GENECARD families. These observations identify GATA2 as a novel susceptibility gene for coronary artery disease and suggest that the study of this transcription factor and its downstream targets may uncover a regulatory network important for coronary artery disease inheritance.


Metabolomic profiling identifies complex lipid species and amino acid analogues associated with response to weight loss interventions.

  • Nathan A Bihlmeyer‎ et al.
  • PloS one‎
  • 2021‎

Obesity is an epidemic internationally. While weight loss interventions are efficacious, they are compounded by heterogeneity with regards to clinically relevant metabolic responses. Thus, we sought to identify metabolic biomarkers that are associated with beneficial metabolic changes to weight loss and which distinguish individuals with obesity who would most benefit from a given type of intervention. Liquid chromatography mass spectrometry-based profiling was used to measure 765 metabolites in baseline plasma from three different weight loss studies: WLM (behavioral intervention, N = 443), STRRIDE-PD (exercise intervention, N = 163), and CBD (surgical cohort, N = 125). The primary outcome was percent change in insulin resistance (as measured by the Homeostatic Model Assessment of Insulin Resistance [%ΔHOMA-IR]) over the intervention. Overall, 92 individual metabolites were associated with %ΔHOMA-IR after adjustment for multiple comparisons. Concordantly, the most significant metabolites were triacylglycerols (TAGs; p = 2.3e-5) and diacylglycerols (DAGs; p = 1.6e-4), with higher baseline TAG and DAG levels associated with a greater improvement in insulin resistance with weight loss. In tests of heterogeneity, 50 metabolites changed differently between weight loss interventions; we found amino acids, peptides, and their analogues to be most significant (4.7e-3) in this category. Our results highlight novel metabolic pathways associated with heterogeneity in response to weight loss interventions, and related biomarkers which could be used in future studies of personalized approaches to weight loss interventions.


A genome-wide trans-ethnic interaction study links the PIGR-FCAMR locus to coronary atherosclerosis via interactions between genetic variants and residential exposure to traffic.

  • Cavin K Ward-Caviness‎ et al.
  • PloS one‎
  • 2017‎

Air pollution is a worldwide contributor to cardiovascular disease mortality and morbidity. Traffic-related air pollution is a widespread environmental exposure and is associated with multiple cardiovascular outcomes such as coronary atherosclerosis, peripheral arterial disease, and myocardial infarction. Despite the recognition of the importance of both genetic and environmental exposures to the pathogenesis of cardiovascular disease, studies of how these two contributors operate jointly are rare. We performed a genome-wide interaction study (GWIS) to examine gene-traffic exposure interactions associated with coronary atherosclerosis. Using race-stratified cohorts of 538 African-Americans (AA) and 1562 European-Americans (EA) from a cardiac catheterization cohort (CATHGEN), we identify gene-by-traffic exposure interactions associated with the number of significantly diseased coronary vessels as a measure of chronic atherosclerosis. We found five suggestive (P<1x10-5) interactions in the AA GWIS, of which two (rs1856746 and rs2791713) replicated in the EA cohort (P < 0.05). Both SNPs are in the PIGR-FCAMR locus and are eQTLs in lymphocytes. The protein products of both PIGR and FCAMR are implicated in inflammatory processes. In the EA GWIS, there were three suggestive interactions; none of these replicated in the AA GWIS. All three were intergenic; the most significant interaction was in a regulatory region associated with SAMSN1, a gene previously associated with atherosclerosis and B cell activation. In conclusion, we have uncovered several novel genes associated with coronary atherosclerosis in individuals chronically exposed to increased ambient concentrations of traffic air pollution. These genes point towards inflammatory pathways that may modify the effects of air pollution on cardiovascular disease risk.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: