Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 69 papers

Minimal Clinically Important Differences for the Modified Rodnan Skin Score: Results from the Scleroderma Lung Studies (SLS-I and SLS-II).

  • Dinesh Khanna‎ et al.
  • Arthritis research & therapy‎
  • 2019‎

This study aimed to assess the minimal clinically important differences (MCIDs) for the modified Rodnan skin score (mRSS) using combined data from the Scleroderma Lung Studies (I and II).


Systemic sclerosis: state of the art on clinical practice guidelines.

  • Vanessa Smith‎ et al.
  • RMD open‎
  • 2018‎

Systemic sclerosis (SSc) is an orphan disease characterised by autoimmunity, fibrosis of the skin and internal organs, and vasculopathy. SSc may be associated with high morbidity and mortality. In this narrative review we summarise the results of a systematic literature research, which was performed as part of the European Reference Network on Rare and Complex Connective Tissue and Musculoskeletal Diseases project, aimed at evaluating existing clinical practice guidelines or recommendations. Only in the domains 'Vascular & Ulcers' (ie, non-pharmacological approach to digital ulcer), 'PAH' (ie, screening and treatment), 'Treatment' and 'Juveniles' (ie, evaluation of juveniles with Raynaud's phenomenon) evidence-based and consensus-based guidelines could be included. Hence there is a preponderance of unmet needs in SSc referring to the diagnosis and (non-)pharmacological treatment of several SSc-specific complications. Patients with SSc experience significant uncertainty concerning SSc-related taxonomy, management (both pharmacological and non-pharmacological) and education. Day-to-day impact of the disease (loss of self-esteem, fatigue, sexual dysfunction, and occupational, nutritional and relational problems) is underestimated and needs evaluation.


Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis.

  • Debomita Chakraborty‎ et al.
  • Nature communications‎
  • 2017‎

Signal transducer and activator of transcription 3 (STAT3) is phosphorylated by various kinases, several of which have been implicated in aberrant fibroblast activation in fibrotic diseases including systemic sclerosis (SSc). Here we show that profibrotic signals converge on STAT3 and that STAT3 may be an important molecular checkpoint for tissue fibrosis. STAT3 signaling is hyperactivated in SSc in a TGFβ-dependent manner. Expression profiling and functional studies in vitro and in vivo demonstrate that STAT3 activation is mediated by the combined action of JAK, SRC, c-ABL, and JNK kinases. STAT3-deficient fibroblasts are less sensitive to the pro-fibrotic effects of TGFβ. Fibroblast-specific knockout of STAT3, or its pharmacological inhibition, ameliorate skin fibrosis in experimental mouse models. STAT3 thus integrates several profibrotic signals and might be a core mediator of fibrosis. Considering that several STAT3 inhibitors are currently tested in clinical trials, STAT3 might be a candidate for molecular targeted therapies of SSc.


Microparticles stimulate angiogenesis by inducing ELR(+) CXC-chemokines in synovial fibroblasts.

  • Nicole Reich‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2011‎

Microparticles (MPs) are small membrane-vesicles that accumulate in the synovial fluids of patients with rheumatoid arthritis (RA). In the arthritic joints, MPs induce a pro-inflammatory and invasive phenotype in synovial fibroblasts (SFs). The present study investigated whether activation of SFs by MPs stimulates angiogenesis in the inflamed joints of patients with RA. MPs were isolated from Jurkat cells and U937 cells by differential centrifugation. SFs were co-cultured with increasing numbers of MPs. The effects of supernatants from co-cultures on endothelial cells were studied in vitro and in vivo using MTT assays, annexin V and propidium iodide staining, trans-well migration assays and modified matrigel pouch assays. MPs strongly induced the expression of the pro-angiogenic ELR⁺ chemokines CXCL1, CXCL2, CXCL3, CXCL5 and CXCL6 in RASFs. Other vascular growth factors were not induced. Supernatants from co-cultures enhanced the migration of endothelial cells, which could be blocked by neutralizing antibodies against ELR⁺ chemokines. Consistent with the specific induction of ELR⁺ chemokines, proliferation and viability of endothelial cells were not affected by the supernatants. In the in vivo bio-chamber assay, supernatants from RASFs co-cultured with MPs stimulated angiogenesis with a significant increase of vessels infiltrating into the matrigel chamber. We demonstrated that MPs activate RASFs to release pro-angiogenic ELR⁺ chemokines. These pro-angiogenic mediators enhance migration of endothelial cells and stimulate the formation of new vessels. Our data suggest that MPs may contribute to the hypervascularization of inflamed joints in patients with rheumatoid arthritis.


Correlational analysis for identifying genes whose regulation contributes to chronic neuropathic pain.

  • Anna-Karin Persson‎ et al.
  • Molecular pain‎
  • 2009‎

Nerve injury-triggered hyperexcitability in primary sensory neurons is considered a major source of chronic neuropathic pain. The hyperexcitability, in turn, is thought to be related to transcriptional switching in afferent cell somata. Analysis using expression microarrays has revealed that many genes are regulated in the dorsal root ganglion (DRG) following axotomy. But which contribute to pain phenotype versus other nerve injury-evoked processes such as nerve regeneration? Using the L5 spinal nerve ligation model of neuropathy we examined differential changes in gene expression in the L5 (and L4) DRGs in five mouse strains with contrasting susceptibility to neuropathic pain. We sought genes for which the degree of regulation correlates with strain-specific pain phenotype.


Patterns and predictors of skin score change in early diffuse systemic sclerosis from the European Scleroderma Observational Study.

  • Ariane L Herrick‎ et al.
  • Annals of the rheumatic diseases‎
  • 2018‎

Our aim was to use the opportunity provided by the European Scleroderma Observational Study to (1) identify and describe those patients with early diffuse cutaneous systemic sclerosis (dcSSc) with progressive skin thickness, and (2) derive prediction models for progression over 12 months, to inform future randomised controlled trials (RCTs).


The AP1 Transcription Factor Fosl2 Promotes Systemic Autoimmunity and Inflammation by Repressing Treg Development.

  • Florian Renoux‎ et al.
  • Cell reports‎
  • 2020‎

Regulatory T cells (Tregs) represent a major population in the control of immune homeostasis and autoimmunity. Here we show that Fos-like 2 (Fosl2), a TCR-induced AP1 transcription factor, represses Treg development and controls autoimmunity. Mice overexpressing Fosl2 (Fosl2tg) indeed show a systemic inflammatory phenotype, with immune infiltrates in multiple organs. This phenotype is absent in Fosl2tg × Rag2-/- mice lacking T and B cells, and Fosl2 induces T cell-intrinsic reduction of Treg development that is responsible for the inflammatory phenotype. Fosl2tg T cells can transfer inflammation, which is suppressed by the co-delivery of Tregs, while Fosl2 deficiency in T cells reduces the severity of autoimmunity in the EAE model. We find that Fosl2 could affect expression of FoxP3 and other Treg development genes. Our data highlight the importance of AP1 transcription factors, in particular Fosl2, during T cell development to determine Treg differentiation and control autoimmunity.


Translational engagement of lysophosphatidic acid receptor 1 in skin fibrosis: from dermal fibroblasts of patients with scleroderma to tight skin 1 mouse.

  • Laetitia Ledein‎ et al.
  • British journal of pharmacology‎
  • 2020‎

Genetic deletion and pharmacological studies suggest a role for lysophosphatidic acid (LPA1 ) receptor in fibrosis. We investigated the therapeutic potential in systemic sclerosis (SSc) of a new orally active selective LPA1 receptor antagonist using dermal fibroblasts from patients and an animal model of skin fibrosis.


The AP-1 transcription factor Fosl-2 drives cardiac fibrosis and arrhythmias under immunofibrotic conditions.

  • Mara Stellato‎ et al.
  • Communications biology‎
  • 2023‎

Fibrotic changes in the myocardium and cardiac arrhythmias represent fatal complications in systemic sclerosis (SSc), however the underlying mechanisms remain elusive. Mice overexpressing transcription factor Fosl-2 (Fosl-2tg) represent animal model of SSc. Fosl-2tg mice showed interstitial cardiac fibrosis, disorganized connexin-43/40 in intercalated discs and deregulated expression of genes controlling conduction system, and developed higher heart rate (HR), prolonged QT intervals, arrhythmias with prevalence of premature ventricular contractions, ventricular tachycardias, II-degree atrio-ventricular blocks and reduced HR variability. Following stimulation with isoproterenol Fosl-2tg mice showed impaired HR response. In contrast to Fosl-2tg, immunodeficient Rag2-/-Fosl-2tg mice were protected from enhanced myocardial fibrosis and ECG abnormalities. Transcriptomics analysis demonstrated that Fosl-2-overexpression was responsible for profibrotic signature of cardiac fibroblasts, whereas inflammatory component in Fosl-2tg mice activated their fibrotic and arrhythmogenic phenotype. In human cardiac fibroblasts FOSL-2-overexpression enhanced myofibroblast signature under proinflammatory or profibrotic stimuli. These results demonstrate that under immunofibrotic conditions transcription factor Fosl-2 exaggerates myocardial fibrosis, arrhythmias and aberrant response to stress.


Effects of faecal microbiota transplantation on the small intestinal mucosa in systemic sclerosis.

  • Noemi Strahm‎ et al.
  • Rheumatology (Oxford, England)‎
  • 2023‎

In SSc, gastrointestinal tract (GIT) involvement is a major concern, with no disease-modifying and limited symptomatic therapies available. Faecal microbiota transplantation (FMT) represents a new therapeutic option for GIT-affliction in SSc, showing clinical promise in a recent controlled pilot trial. Here, we aim to investigate effects of FMT on duodenal biopsies collected from SSc patients by immunohistochemistry and transcriptome profiling.


The AP-1 Transcription Factor Fosl-2 Regulates Autophagy in Cardiac Fibroblasts during Myocardial Fibrogenesis.

  • Jemima Seidenberg‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown.


The enigma of mixed connective tissue disease-challenges in routine care.

  • Adrian Wanzenried‎ et al.
  • Clinical rheumatology‎
  • 2022‎

As a rare and heterogeneous disease, mixed connective tissue disease (MCTD) represents a challenge. Herein, we aimed to unravel potential pitfalls including correct referral diagnosis, distinction from other connective tissue diseases (CTD) and treatment modalities.


Phenotyping of idiopathic pulmonary arterial hypertension: a registry analysis.

  • Marius M Hoeper‎ et al.
  • The Lancet. Respiratory medicine‎
  • 2022‎

Among patients meeting diagnostic criteria for idiopathic pulmonary arterial hypertension (IPAH), there is an emerging lung phenotype characterised by a low diffusion capacity for carbon monoxide (DLCO) and a smoking history. The present study aimed at a detailed characterisation of these patients.


Dysregulated Expression of Arterial MicroRNAs and Their Target Gene Networks in Temporal Arteries of Treatment-Naïve Patients with Giant Cell Arteritis.

  • Tadeja Kuret‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

In this study, we explored expression of microRNA (miR), miR-target genes and matrix remodelling molecules in temporal artery biopsies (TABs) from treatment-naïve patients with giant cell arteritis (GCA, n = 41) and integrated these analyses with clinical, laboratory, ultrasound and histological manifestations of GCA. NonGCA patients (n = 4) served as controls. GCA TABs exhibited deregulated expression of several miRs (miR-21-5p, -145-5p, -146a-5p, -146b-5p, -155-5p, 424-3p, -424-5p, -503-5p), putative miR-target genes (YAP1, PELI1, FGF2, VEGFA, KLF4) and matrix remodelling factors (MMP2, MMP9, TIMP1, TIPM2) with key roles in Toll-like receptor signaling, mechanotransduction and extracellular matrix biology. MiR-424-3p, -503-5p, KLF4, PELI1 and YAP1 were identified as new deregulated molecular factors in GCA TABs. Quantities of miR-146a-5p, YAP1, PELI1, FGF2, TIMP2 and MMP9 were particularly high in histologically positive GCA TABs with occluded temporal artery lumen. MiR-424-5p expression in TABs and the presence of facial or carotid arteritis on ultrasound were associated with vision disturbances in GCA patients. Correlative analysis of miR-mRNA quantities demonstrated a highly interrelated expression network of deregulated miRs and mRNAs in temporal arteries and identified KLF4 as a candidate target gene of deregulated miR-21-5p, -146a-5p and -155-5p network in GCA TABs. Meanwhile, arterial miR and mRNA expression did not correlate with constitutive symptoms and signs of GCA, elevated markers of systemic inflammation nor sonographic characteristics of GCA. Our study provides new insights into GCA pathophysiology and uncovers new candidate biomarkers of vision impairment in GCA.


High fatigue scores in patients with idiopathic inflammatory myopathies: a multigroup comparative study from the COVAD e-survey.

  • Silvia Grignaschi‎ et al.
  • Rheumatology international‎
  • 2023‎

Idiopathic inflammatory myopathies (IIMs) confer a significant risk of disability and poor quality of life, though fatigue, an important contributing factor, remains under-reported in these individuals. We aimed to compare and analyze differences in visual analog scale (VAS) scores (0-10 cm) for fatigue (VAS-F) in patients with IIMs, non-IIM systemic autoimmune diseases (SAIDs), and healthy controls (HCs). We performed a cross-sectional analysis of the data from the COVID-19 Vaccination in Autoimmune Diseases (COVAD) international patient self-reported e-survey. The COVAD survey was circulated from December 2020 to August 2021, and details including demographics, COVID-19 history, vaccination details, SAID details, global health, and functional status were collected from adult patients having received at least one COVID-19 vaccine dose. Fatigue experienced 1 week prior to survey completion was assessed using a single-item 10 cm VAS. Determinants of fatigue were analyzed in regression models. Six thousand nine hundred and eighty-eight respondents (mean age 43.8 years, 72% female; 55% White) were included in the analysis. The overall VAS-F score was 3 (IQR 1-6). Patients with IIMs had similar fatigue scores (5, IQR 3-7) to non-IIM SAIDs [5 (IQR 2-7)], but higher compared to HCs (2, IQR 1-5; P < 0.001), regardless of disease activity. In adjusted analysis, higher VAS-F scores were seen in females (reference female; coefficient -0.17; 95%CI -0.21 to -13; P < 0.001) and Caucasians (reference Caucasians; coefficient -0.22; 95%CI -0.30 to -0.14; P < 0.001 for Asians and coefficient -0.08; 95%CI -0.13 to 0.30; P = 0.003 for Hispanics) in our cohort. Our study found that patients with IIMs exhibit considerable fatigue, similar to other SAIDs and higher than healthy individuals. Women and Caucasians experience greater fatigue scores, allowing identification of stratified groups for optimized multidisciplinary care and improve outcomes such as quality of life.


Systemic pharmacological treatment of digital ulcers in systemic sclerosis: a systematic literature review.

  • Laura Ross‎ et al.
  • Rheumatology (Oxford, England)‎
  • 2023‎

To evaluate the evidence concerning systemic pharmacological treatments for SSc digital ulcers (DUs) to inform the development of evidence-based treatment guidelines.


Oligomeric S100A4 Is Associated With Monocyte Innate Immune Memory and Bypass of Tolerance to Subsequent Stimulation With Lipopolysaccharides.

  • Michel Neidhart‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Objectives: Most DAMPs in inflammatory diseases are TLR2- and TLR4-ligands and according to the current concept, repeated stimuli would result in tolerance. Aims of the study were to verify this assumption, to investigate whether epigenetic effectors are involved and to explore the situation in rheumatoid arthritis (RA). Methods: A trained immunity (TI) and tolerance protocol was established using peripheral blood monocytes from healthy donors, β-glucan and lipopolysaccharide (LPS). The training or tolerance capacities of RA-relevant DAMPs were tested. Results: β-Glucan-, oS100A4-, HMBG1-, and HSP90-pretreated monocytes showed increased IL-6 responses to LPS re-stimulation. β-Glucan, oS100A and tenascin C induced training of monocytes to release more TNFα. In comparison to β-glucan, most DAMPs tested induced less TI, with exception of oS100A4. Monocytes exposed to oS100A4 showed increased IL-1β, IL-6, and TNFα in response to LPS, in spite that both stimulate TLR4. RNASEq upon β-glucan or oS100A4 revealed similar changes in chemokines/cytokines and epigenetic effectors; 17 epigenetic effectors correlated with chemokine/cytokine gene expression; PRDM8 was associated with more chemokine and cytokine transcripts. Knockdown of PRDM8 abolished TI induced by oS100A4. In RA, plasma S100A4 correlated with increased CSF2, and increased PRDM8 transcription in RA monocytes was associated with increased plasma CCL5 and IL-6, as well as therapy-resistance. Conclusion: Bypass of tolerance by DAMPs might be a phenomenon as important as TI, since it could explain how chronic inflammation can be maintained in spite of an environment with multiple TLR2/TLR4-ligands. In RA monocytes, a PRDM8-dependent TI mechanism could be responsible for sustained chemokine/cytokines levels.


WNT3a and WNT5a Transported by Exosomes Activate WNT Signaling Pathways in Human Cardiac Fibroblasts.

  • Edyta Działo‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

WNT signaling plays an important role in fibrotic processes in the heart. Recently, exosomes have been proposed as novel extracellular transporters for WNT proteins. In this study, we analyzed whether WNT3a and WNT5a carried by exosomes could activate downstream molecular pathways in human cardiac fibroblasts. Exosomes were isolated from conditioned medium of control, WNT3a- and WNT5a-producing L cells by differential ultracentrifugations. Obtained exosomes showed size ranging between 20⁻150 nm and expressed exosomal markers ALG-2-interacting protein X (ALIX) and CD63. Treatment with WNT3a-rich exosomes inhibited activity of glycogen synthase kinase 3β (GSK3β), induced nuclear translocation of β-catenin, and activated T-cell factor (TCF)/lymphoid enhancer factor (LEF) transcription factors as well as expression of WNT/β-catenin responsive genes in cardiac fibroblasts, but did not coactivate extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein 1 (AP-1) signaling pathways. In contrast, exosomes produced by WNT5a-producing L cells failed to activate β-catenin-dependent response, but successfully triggered phosphorylation of ERK1/2 and JNK and stimulated IL-6 production. In conclusion, exosomes containing WNT proteins can functionally contribute to cardiac fibrosis by activating profibrotic WNT pathways on cardiac fibroblasts and may represent a novel mechanism of spreading profibrotic signals in the heart.


Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study.

  • J Gerry Coghlan‎ et al.
  • Annals of the rheumatic diseases‎
  • 2014‎

Earlier detection of pulmonary arterial hypertension (PAH), a leading cause of death in systemic sclerosis (SSc), facilitates earlier treatment. The objective of this study was to develop the first evidence-based detection algorithm for PAH in SSc.


Adipokine expression in systemic sclerosis lung and gastrointestinal organ involvement.

  • Elena Neumann‎ et al.
  • Cytokine‎
  • 2019‎

The immunomodulatory properties of adipokines have previously been reported in autoimmune disorders. Less is known about the role of adipokines in systemic sclerosis (SSc). Lung and gastrointestinal tract are frequently involved in SSc; therefore, these organs were analyzed for adipokine expression as well as pulmonary samples of patients suffering from idiopathic pulmonary fibrosis (IPF) as comparison.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: