Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Pioglitazone transiently stimulates paraoxonase-2 expression in male nonhuman primate brain: Implications for sex-specific therapeutics in neurodegenerative disorders.

  • Jennifer K Blackburn‎ et al.
  • Neurochemistry international‎
  • 2022‎

Paraoxonase-2 (PON2) enhances mitochondria function and protects against oxidative stress. Stimulating its expression has therapeutic potential for diseases where oxidative stress plays a significant role in the pathology, such as Parkinson's disease. Clinical and preclinical evidence suggest that the anti-diabetic drug pioglitazone may provide neuroprotection in Parkinson's disease, Alzheimer's disease, and stroke, but the biochemical pathway(s) responsible has not been fully elucidated. To determine the effect of pioglitazone on PON2 expression we treated male African green monkeys with oral pioglitazone (5 mg/kg/day) for 1 and 3 weeks. We found that pioglitazone increased PON2 mRNA and protein expression in brain following 1 week of treatment, however, by 3 weeks of treatment PON2 expression had returned to baseline. This transient increase was detected in substantia nigra, striatum, hippocampus, and dorsolateral prefrontal cortex The short-term impact of pioglitazone on PON2 expression in striatum may contribute to the discrepancy in the potency of the drug between short-term animal models and clinical trials for Parkinson's disease. Both PON2 and pioglitazone's receptor, peroxisome proliferator-activated receptor gamma (PPARγ), possess sex- and brain region-dependent expression, which may play a role in the short-term effect of pioglitazone and provide clues to extending the beneficial effects of PON2 activation.


Age-associated sex difference in the expression of mitochondria-based redox sensitive proteins and effect of pioglitazone in nonhuman primate brain.

  • Sumit Jamwal‎ et al.
  • Biology of sex differences‎
  • 2023‎

Paraoxonase 2 (PON2) and neuronal uncoupling proteins (UCP4 and UCP5) possess antioxidant, anti-apoptotic activities and minimize accumulation of reactive oxygen species in mitochondria. While age and sex are risk factors for several disorders that are linked with oxidative stress, no study has explored the age- and sex-dependent expression of PON2 isoforms, UCP4 and UCP5 in primate brain or identified a drug to activate UCP4 and UCP5 in vivo. Preclinical studies suggest that the peroxisome proliferator-activated receptor gamma agonist, pioglitazone (PIO), can be neuroprotective, although the mechanism responsible is unclear. Our previous studies demonstrated that pioglitazone activates PON2 in primate brain and we hypothesized that pioglitazone also induces UCP4/5. This study was designed to elucidate the age- and sex-dependent expression of PON2 isoforms, UCP4 and UCP5, in addition to examining the impact of systemic PIO treatment on UCP4 and UCP5 expression in primate brain.


Transient Impairment in Microglial Function Causes Sex-Specific Deficits in Synaptic and Hippocampal Function in Mice Exposed to Early Adversity.

  • Sahabuddin Ahmed‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early life adversity, with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of early life adversity, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower. Since the hippocampus undergoes intense synaptic pruning during the second and third weeks of life, we investigated whether microglia are required for the synaptic and behavioral aberrations observed in adolescent LB mice. Indeed, transient ablation of microglia from P13-21, in normally developing mice caused sex-specific behavioral and synaptic abnormalities similar to those observed in adolescent LB mice. Furthermore, chemogenetic activation of microglia during the same period reversed the microglial-mediated phagocytic deficits at P17 and restored normal contextual fear conditioning and synaptic connectivity in adolescent LB male mice. Our data support an additional contribution of astrocytes in the sex-specific effects of LB, with increased expression of the membrane receptor MEGF10 and enhanced synaptic engulfment in hippocampal astrocytes of 17-day-old LB females, but not in LB male littermates. This finding suggests a potential compensatory mechanism that may explain the relative resilience of LB females. Collectively, these studies highlight a novel role for glial cells in mediating sex-specific hippocampal deficits in a mouse model of early-life adversity.


Neuroprotective potential of Quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.

  • Shamsher Singh‎ et al.
  • Neural regeneration research‎
  • 2017‎

1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that selectively damages dopaminergic neurons in the substantia nigra pars compacta and induces Parkinson's like symptoms in rodents. Quercetin (QC) is a natural polyphenolic bioflavonoid with potent antioxidant and anti-inflammatory properties but lacks of clinical attraction due to low oral bioavailability. Piperine is a well established bioavailability enhancer used pre-clinically to improve the bioavailability of antioxidants (e.g., Quercetin). Therefore, the present study was designed to evaluate the neuroprotective potential of QC together with piperine against MPTP-induced neurotoxicity in rats. MPTP (100 μg/μL/rat, bilaterally) was injected intranigrally on days 1, 4 and 7 using a digital stereotaxic apparatus. QC (25 and 50 mg/kg, intragastrically) and QC (25 mg/kg, intragastrically) in combination with piperine (2.5 mg/kg, intragastrically) were administered daily for 14 days starting from day 8 after the 3rd injection of MPTP. On day 22, animals were sacrificed and the striatum was isolated for oxidative stress parameter (thiobarbituric acid reactive substances, nitrite and glutathione), neuroinflammatory cytokine (interleukin-1β, interleukin-6, and tumor necrosis factor-α) and neurotransmitter (dopamine, norepinephrine, serotonin, gamma-aminobutyric acid, glutamate, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid) evaluations. Bilateral infusion of MPTP into substantia nigra pars compacta led to significant motor deficits as evidenced by impairments in locomotor activity and rotarod performance in open field test and grip strength and narrow beam walk performance. Both QC (25 and 50 mg/kg) and QC (25 mg/kg) in combination with piperine (2.5 mg/kg), in particular the combination therapy, significantly improved MPTP-induced behavioral abnormalities in rats, reversed the abnormal alterations of neurotransmitters in the striatum, and alleviated oxidative stress and inflammatory response in the striatum. These findings indicate that piperine can enhance the antioxidant and anti-inflammatory properties of QC, and QC in combination with piperine exhibits strong neuroprotective effects against MPTP-induced neurotoxicity.


Beneficial effect of rice bran extract against 3-nitropropionic acid induced experimental Huntington's disease in rats.

  • Navneet Kaur‎ et al.
  • Toxicology reports‎
  • 2015‎

Huntington's disease (HD) is a neurodegenerative disorder, characterized by progressive motor and non-motor dysfunction due to degeneration of medium spiny neurons in striatum. 3-Nitropropionic acid is commonly used to induce the animal model of HD. Rice bran is supposed to have beneficial effects on mitochondrial function. The present study has been designed to explore the effect of rice bran extract against 3-Nitropropionic acid induced neurotoxicity in rats. 3-Nitropropionic acid (10 mg/kg, i.p) was administered systemically for 21 days. Hexane and ethanol extract of rice bran were prepared using Soxhlation. Hexane (250 mg/kg) and ethanol extract (250 mg/kg) were administered per os for 21 days in 3-NP treated groups. Behavioral parameters (body weight, grip strength, motor coordination, locomotion) were conducted on 7th, 14th and 21st day. Animals were sacrificed on 22nd day for biochemical, mitochondrial dysfunction (Complex II), neuroinflammatory and neurochemical estimation in striatum. This study demonstrates significant alteration in behavioral parameters, oxidative burden (increased lipid peroxidation, nitrite concentration and decreased glutathione), mitochondrial function (decreased Complex II enzyme activity), pro-inflammatory mediators and neurochemical levels in 3-nitropropionic acid treated animals. Administration of hexane and ethanol extract prevented the behavioral, biochemical, neuroinflammatory (increased TNF-α, IL-1β and IL-6) and neurochemical alterations (decreased dopamine, norepinephrine, serotonin, 5-hydroxy indole acetic acid, GABA and increased 3,4-dihydro phenyl acetaldehyde, homovanillic acid and glutamate levels) induced by 3-nitropropionic acid. The outcomes of present study suggest that rice bran extract is beneficial and might emerge as an adjuvant or prophylactic therapy for treatment of HD like symptoms.


Bacillus Calmette-Guérin Vaccine Attenuates Haloperidol-Induced TD-like Behavioral and Neurochemical Alteration in Experimental Rats.

  • Narhari Gangaram Yedke‎ et al.
  • Biomolecules‎
  • 2023‎

Tardive dyskinesia (TD) is a hyperkinetic movement disorder that displays unusual involuntary movement along with orofacial dysfunction. It is predominantly associated with the long-term use of antipsychotic medications, particularly typical or first-generation antipsychotic drugs such as haloperidol. Oxidative stress, mitochondrial dysfunction, neuroinflammation, and apoptosis are major pathophysiological mechanisms of TD. The BCG vaccine has been reported to suppress inflammation, oxidative stress, and apoptosis and exert neuroprotection via several mechanisms. Our study aimed to confirm the neuroprotective effect of the BCG vaccine against haloperidol-induced TD-like symptoms in rats. The rats were given haloperidol (1 mg/kg, i.p.) for 21 days after 1 h single administration of the BCG vaccine (2 × 107 cfu). Various behavioral parameters for orofacial dyskinesia and locomotor activity were assessed on the 14th and 21st days after haloperidol injection. On the 22nd day, all rats were euthanized, and the striatum was isolated to estimate the biochemical, apoptotic, inflammatory, and neurotransmitter levels. The administration of the BCG vaccine reversed orofacial dyskinesia and improved motor function in regard to haloperidol-induced TD-like symptoms in rats. The BCG vaccine also enhanced the levels of antioxidant enzymes (SOD, GSH) and reduced prooxidants (MDA, nitrite) and pro-apoptotic markers (Cas-3, Cas-6, Cas-9) in rat brains. Besides this, BCG treatment also restored the neurotransmitter (DA, NE, 5-HT) levels and decreased the levels of HVA in the striatum. The study findings suggest that the BCG vaccine has antioxidant, antiapoptotic, and neuromodulatory properties that could be relevant in the management of TD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: