Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Nogo receptor expression in microglia/macrophages during experimental autoimmune encephalomyelitis progression.

  • Amani A Alrehaili‎ et al.
  • Neural regeneration research‎
  • 2018‎

Myelin-associated inhibitory factors within the central nervous system (CNS) are considered to be one of the main obstacles for axonal regeneration following disease or injury. The nogo receptor 1 (NgR1) has been well documented to play a key role in limiting axonal regrowth in the injured and diseased mammalian CNS. However, the role of nogo receptor in immune cell activation during CNS inflammation is yet to be mechanistically elucidated. Microglia/macrophages are immune cells that are regarded as pathogenic contributors to inflammatory demyelinating lesions in multiple sclerosis (MS). In this study, the animal model of MS, experimental autoimmune encephalomyelitis (EAE) was induced in ngr1+/+ and ngr1-/- female mice following injection with the myelin oligodendrocyte glycoprotein (MOG35-55) peptide. A fate-map analysis of microglia/macrophages was performed throughout spinal cord sections of EAE-induced mice at clinical scores of 0, 1, 2 and 3, respectively (increasing locomotor disability) from both genotypes, using the CD11b and Iba1 cell markers. Western immunoblotting using lysates from isolated spinal cord microglia/macrophages, along with immunohistochemistry and flow cytometric analysis, was performed to demonstrate the expression of nogo receptor and its two homologs during EAE progression. Myelin protein engulfment during EAE progression in ngr1+/+ and ngr1-/- mice was demonstrated by western immunblotting of lysates from isolated spinal cord microglia/macrophages, detecting levels of Nogo-A and MOG. The numbers of M1 and M2 microglia/macrophage phenotypes present in the spinal cords of EAE-induced ngr1+/+ and ngr1-/- mice, were assessed by flow cytometric analysis using CD38 and Erg-2 markers. A significant difference in microglia/macrophage numbers between ngr1+/+ and ngr1-/- mice was identified during the progression of the clinical symptoms of EAE, in the white versus gray matter regions of the spinal cord. This difference was unrelated to the expression of NgR on these macrophage/microglial cells. We have identified that as EAE progresses, the phagocytic activity of microglia/macrophages with myelin debris, in ngr1-/- mice, was enhanced. Moreover, we show a modulation from a predominant M1-pathogenic to the M2-neurotrophic cell phenotype in the ngr1-/- mice during EAE progression. These findings suggest that CNS-specific macrophages and microglia of ngr1-/- mice may exhibit an enhanced capacity to clear inhibitory molecules that are sequestered in inflammatory lesions.


TNFalpha mediates Schwann cell death by upregulating p75NTR expression without sustained activation of NFkappaB.

  • Kristy Boyle‎ et al.
  • Neurobiology of disease‎
  • 2005‎

Administration of tumour necrosis factor alpha (TNFalpha) to axotomised mouse neonatal sciatic nerves increased Schwann cell apoptosis in the distal nerve segments, 5-fold greater than axotomy alone. TNFalpha upregulated the low affinity neurotrophin receptor, p75NTR, indicative of phenotype reversion in Schwann cells. Furthermore, re-expression of p75NTR and downregulation of the pro-myelinating transcription factor, Oct 6, in Schwann cells occurred by treatment with TNFalpha, even after the maturation of these cells with brain derived neurotrophic factor (BDNF). TNFalpha treatment of Schwann cells produced only a transient activation of NFkappaB. More importantly, in NFkappaB (p65) mutant mice, axotomy increased Schwann cell apoptosis further than that seen in mice expressing NFkappaB (p65), implicating a survival role for NFkappaB. Collectively, these data suggest that TNFalpha can potentiate Schwann cell death through the modulation of their phenotype. Immature Schwann cells express a high level of p75NTR and as a consequence are susceptible to extracellular death stimuli because of the lack of sustained NFkappaB translocation.


The Role of Transthyretin in Oligodendrocyte Development.

  • Bandar Alshehri‎ et al.
  • Scientific reports‎
  • 2020‎

Transthyretin (TTR) is a protein that binds and distributes thyroid hormones (THs) in blood and cerebrospinal fluid. Previously, two reports identified TTR null mice as hypothyroid in the central nervous system (CNS). This prompted our investigations into developmentally regulated TH-dependent processes in brains of wildtype and TTR null mice. Despite logical expectations of a hypomyelinating phenotype in the CNS of TTR null mice, we observed a hypermyelination phenotype, synchronous with an increase in the density of oligodendrocytes in the corpus callosum and anterior commissure of TTR null mice during postnatal development. Furthermore, absence of TTR enhanced proliferation and migration of OPCs with decreased apoptosis. Neural stem cells (NSCs) isolated from the subventricular zone of TTR null mice at P21 revealed that the absence of TTR promoted NSC differentiation toward a glial lineage. Importantly, we identified TTR synthesis in OPCs, suggestive of an alternate biological function in these cells that may extend beyond an extracellular TH-distributor protein. The hypermyelination mechanism may involve increased pAKT (involved in oligodendrocyte maturation) in TTR null mice. Elucidating the regulatory role of TTR in NSC and OPC biology could lead to potential therapeutic strategies for the treatment of acquired demyelinating diseases.


Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells.

  • Elina M Sutinen‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2014‎

Chronic inflammation and oxidative stress (OS) are present in Alzheimer's disease (AD) brains in addition to neuronal loss, Amyloid-β (Aβ) plaques and hyperphosphorylated tau-protein neurofibrillary tangles (NFTs). Previously we showed that levels of the pro-inflammatory cytokine, interleukin-18 (IL-18), are elevated in post-mortem AD brains. IL-18 can modulate the tau kinases, Cdk5 and GSK3β, as well as Aβ-production. IL-18 levels are also increased in AD risk diseases, including type-2 diabetes and obesity. Here, we explored other IL-18 regulated proteins in neuron-like SH-SY5Y cells. Differentiated SH-SY5Y cells, incubated with IL-18 for 24, 48, or 72 h, were analyzed by two-dimensional gel electrophoresis (2D-DIGE). Specific altered protein spots were chosen and identified with mass spectrometry (MS) and verified by western immunoblotting (WIB). IL-18 had time-dependent effects on the SH-SY5Y proteome, modulating numerous protein levels/modifications. We concentrated on those related to OS (DDAH2, peroxiredoxins 2, 3, and 6, DJ-1, BLVRA), Aβ-degradation (MMP14, TIMP2), Aβ-aggregation (Septin-2), and modifications of axon growth and guidance associated, collapsin response mediator protein 2 (CRMP2). IL-18 significantly increased antioxidative enzymes, indicative of OS, and altered levels of glycolytic α- and γ-enolase and multifunctional 14-3-3γ and -ε, commonly affected in neurodegenerative diseases. MMP14, TIMP2, α-enolase and 14-3-3ε, indirectly involved in Aβ metabolism, as well as Septin-2 showed changes that increase Aβ levels. Increased 14-3-3γ may contribute to GSK3β driven tau hyperphosphorylation and CRMP2 Thr514 and Ser522 phosphorylation with the Thr555-site, a target for Rho kinase, showing time-dependent changes. IL-18 also increased caspase-1 levels and vacuolization of the cells. Although our SH-SY5Y cells were not aged, as neurons in AD, our work suggests that heightened or prolonged IL-18 levels can drive protein changes of known relevance to AD pathogenesis.


Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury.

  • Wissam Chiha‎ et al.
  • Experimental neurology‎
  • 2020‎

Secondary degeneration following an initial injury to the central nervous system (CNS) results in increased tissue loss and is associated with increasing functional impairment. Unilateral partial dorsal transection of the adult rat optic nerve (ON) has proved to be a useful experimental model in which to study factors that contribute to secondary degenerative events. Using this injury model, we here quantified the protective effects of intravitreally administered bi-cistronic adeno-associated viral (AAV2) vectors encoding either brain derived neurotrophic factor (BDNF) or a mutant, phospho-resistant, version of collapsin response mediator protein 2 (CRMP2T555A) on retinal ganglion cells (RGCs), their axons, and associated myelin. To test for potential synergistic interactions, some animals received combined injections of both vectors. Three months post-injury, all treatments maintained RGC numbers in central retina, but only AAV2-BDNF significantly protected ventrally located RGCs exclusively vulnerable to secondary degeneration. Behaviourally, treatments that involved AAV2-BDNF significantly restored the number of smooth-pursuit phases of optokinetic nystagmus. While all therapeutic regimens preserved axonal density and proportions of typical complexes, including heminodes and single nodes, BDNF treatments were generally more effective in maintaining the length of the node of Ranvier in myelin surrounding ventral ON axons after injury. Both AAV2-BDNF and AAV2-CRMP2T555A prevented injury-induced changes in G-ratio and overall myelin thickness, but only AAV2-BDNF administration protected against large-scale myelin decompaction in ventral ON. In summary, in a model of secondary CNS degeneration, both BDNF and CRMP2T555A vectors were neuroprotective, however different efficacies were observed for these overexpressed proteins in the retina and ON, suggesting disparate cellular and molecular targets driving responses for neural repair. The potential use of these vectors to treat other CNS injuries and pathologies is discussed.


Amyloid-beta-dependent phosphorylation of collapsin response mediator protein-2 dissociates kinesin in Alzheimer's disease.

  • Sara H Mokhtar‎ et al.
  • Neural regeneration research‎
  • 2018‎

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles. Prior to the development of these characteristic pathological hallmarks of AD, anterograde axonal transport is impaired. However, the key proteins that initiate these intracellular impairments remain elusive. The collapsin response mediator protein-2 (CRMP-2) plays an integral role in kinesin-1-dependent axonal transport and there is evidence that phosphorylation of CRMP-2 releases kinesin-1. Here, we tested the hypothesis that amyloid-beta (Aβ)-dependent phosphorylation of CRMP-2 disrupts its association with the kinesin-1 (an anterograde axonal motor transport protein) in AD. We found that brain sections and lysates from AD patients demonstrated elevated phosphorylation of CRMP-2 at the T555 site. Additionally, in the transgenic Tg2576 mouse model of familial AD (FAD) that exhibits Aβ accumulation in the brain with age, we found substantial co-localization of pT555CRMP-2 and dystrophic neurites. In SH-SY5Y differentiated neuronal cultures, Aβ-dependent phosphorylation of CRMP-2 at the T555 site was also elevated and this reduced the CRMP-2 association with kinesin-1. The overexpression of an unphosphorylatable form of CRMP-2 in neurons promoted the re-establishment of CRMP-2-kinesin association and axon elongation. These data suggest that Aβ-dependent phosphorylation of CRMP-2 at the T555 site may directly impair anterograde axonal transport protein function, leading to neuronal defects.


The Influence of Differentially Expressed Tissue-Type Plasminogen Activator in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis.

  • Lisa Cm Dahl‎ et al.
  • PloS one‎
  • 2016‎

Tissue type plasminogen activator (t-PA) has been implicated in the development of multiple sclerosis (MS) and in rodent models of experimental autoimmune encephalomyelitis (EAE). We show that levels of t-PA mRNA and activity are increased ~4 fold in the spinal cords of wild-type mice that are mice subjected to EAE. This was also accompanied with a significant increase in the levels of pro-matrix metalloproteinase 9 (pro-MMP-9) and an influx of fibrinogen. We next compared EAE severity in wild-type mice, t-PA-/- mice and T4+ transgenic mice that selectively over-express (~14-fold) mouse t-PA in neurons of the central nervous system. Our results confirm that t-PA deficient mice have an earlier onset and more severe form of EAE. T4+ mice, despite expressing higher levels of endogenous t-PA, manifested a similar rate of onset and neurological severity of EAE. Levels of proMMP-9, and extravasated fibrinogen in spinal cord extracts were increased in mice following EAE onset regardless of the absence or over-expression of t-PA wild-type. Interestingly, MMP-2 levels also increased in spinal cord extracts of T4+ mice following EAE, but not in the other genotypes. Hence, while the absence of t-PA confers a more deleterious form of EAE, neuronal over-expression of t-PA does not overtly protect against this condition with regards to symptom onset or severity of EAE.


Lumbar spine intrathecal transplantation of neural precursor cells promotes oligodendrocyte proliferation in hot spots of chronic demyelination.

  • Paschalis Theotokis‎ et al.
  • Brain pathology (Zurich, Switzerland)‎
  • 2022‎

Experimental autoimmune encephalomyelitis (EAE) is a basic and reliable model used to study clinical and pathological hallmarks of multiple sclerosis (MS) in rodents. Several studies suggest neural precursor cells (NPCs) as a significant research tool while reporting that transplanted NPCs are a promising therapeutic approach to treating neurological disorders, such as MS. The main objective was to approach a preclinical, in vivo scenario of oligodendrogenesis with NPCs, targeting the main chronic demyelinated lumbosacral milieu of EAE, via the least invasive delivery method which is lumbar puncture. We utilized MOG35-55 peptide to induce EAE in C57BL/6 mice and prior to the acute relapse, we intervened with either the traceable GFP+ cellular therapy or saline solution in the intrathecal space of their lumbar spine. A BrdU injection, which enabled us to monitor endogenous proliferation, marked the endpoint 50 days post-induction (50 dpi). Neuropathology with high-throughput, triple immunofluorescent, and transmission electron microscopy (TEM) data were extracted and analyzed. The experimental treatment attenuated the chronic phase of EAE (50 dpi; score <1) following an acute, clinical relapse. Myelination and axonal integrity were rescued in the NPC-treated animals along with suppressed immune populations. The differentiation profile of the exogenous NPCs and endogenous BrdU+ cells was location-dependent where GFP+ -rich areas drove undifferentiated phenotypes toward the oligodendrocyte lineage. In situ oligodendrocyte enrichment was demonstrated through increased (p < 0.001) gap junction channels of Cx32 and Cx47, reliable markers for proliferative oligodendroglia syncytium. TEM morphometric analysis ultimately manifested an increased g-ratio in lumbosacral fibers of the recovered animals (p < 0.001). Herein, we suggest that a single, lumbar intrathecal administration of NPCs capacitated a viable cellular load and resulted in clinical and pathological amelioration, stimulating resident OPCs to overcome the remyelination failure in EAE demyelinating locale.


Enhanced re-myelination in transthyretin null mice following cuprizone mediated demyelination.

  • Maurice Pagnin‎ et al.
  • Neuroscience letters‎
  • 2022‎

Thyroid hormones (THs) impact nearly every tissue in the body, including the adult and developing central nervous system. The distribution of THs around the body is facilitated by specific TH distributor proteins including transthyretin (TTR). In addition to being produced in the liver, TTR is synthesized in the choroid plexus of the brain. The synthesis of TTR by choroid plexus epithelial cells allows transport of THs from the blood into the brain. Adequate supply of THs to the brain is required for developmental myelination of axons and the maintenance of mature myelin throughout adult life, essential for the proper conduction of nerve impulses. Insufficient THs in developing mice results in hypo-myelination (thinner myelin around axons). However, confounding evidence demonstrated that in developing brain of TTR null mice, hyper-myelination of axons was observed in the corpus callosum. This raised the question whether increased myelination occurs during re-myelination in the adult brain following targeted demyelination. To investigate the effect of TTR during re-myelination, cuprizone induced depletion of myelin in the corpus callosum of adult mice was initiated, followed by a period of myelin repair. Myelin thickness was measured to assess re-myelination rates for 6 weeks. TTR null mice displayed expedited rates of early re-myelination, preferentially re-myelinating smaller axons compared to those of wild type mice. Furthermore, TTR null mice produced thicker myelin than wild type mice during re-myelination. These results may have broader implications in understanding mechanisms governing re-myelination, particularly in potential therapeutic contexts for acquired demyelinating diseases such as multiple sclerosis.


Nogo-receptor 1 deficiency has no influence on immune cell repertoire or function during experimental autoimmune encephalomyelitis.

  • Sara A Litwak‎ et al.
  • PloS one‎
  • 2013‎

The potential role of Nogo-66 Receptor 1 (NgR1) on immune cell phenotypes and their activation during neuroinflammatory diseases such as multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), is unclear. To further understand the function of this receptor on haematopoietically-derived cells, phenotypic and functional analyses were performed using NgR1-deficient (ngr1-/-) animals. Flow cytometry-based phenotypic analyses performed on blood, spleen, thymus, lymph nodes, bone marrow and central nervous-system (CNS)-infiltrating blood cells revealed no immunological defects in naïve ngr1-/- animals versus wild-type littermate (WTLM) controls. EAE was induced by either recombinant myelin oligodendrocyte glycoprotein (rMOG), a model in which B cells are considered to contribute pathogenically, or by MOG35-55 peptide, a B cell-independent model. We have demonstrated that in ngr1-/- mice injected with MOG35-55, a significant reduction in the severity of EAE correlated with reduced axonal damage present in the spinal cord when compared to their WTLM controls. However, despite a reduction in axonal damage observed in the CNS of ngr1-/- mice at the chronic stage of disease, no clinical differences could be attributed to a specific genotype when rMOG was used as the encephalitogen. Following MOG35-55-induction of EAE, we could not derive any major changes to the immune cell populations analyzed between ngr1-/- and WTLM mice. Collectively, these data demonstrate that NgR1 has little if any effects on the repertoire of immune cells, their activation and trafficking to the CNS.


Nogo receptor 1 regulates Caspr distribution at axo-glial units in the central nervous system.

  • Jae Young Lee‎ et al.
  • Scientific reports‎
  • 2017‎

Axo-glial units are highly organised microstructures propagating saltatory conduction and are disrupted during multiple sclerosis (MS). Nogo receptor 1 (NgR1) has been suggested to govern axonal damage during the progression of disease in the MS-like mouse model, experimental autoimmune encephalomyelitis (EAE). Here we have identified that adult ngr1 -/- mice, previously used in EAE and spinal cord injury experiments, display elongated paranodes, and nodes of Ranvier. Unstructured paranodal regions in ngr1 -/- mice are matched with more distributed expression pattern of Caspr. Compound action potentials of optic nerves and spinal cords from naïve ngr1 -/- mice are delayed and reduced. Molecular interaction studies revealed enhanced Caspr cleavage. Our data suggest that NgR1 may regulate axo-myelin ultrastructure through Caspr-mediated adhesion, regulating the electrophysiological signature of myelinated axons of central nervous system (CNS).


B-cells expressing NgR1 and NgR3 are localized to EAE-induced inflammatory infiltrates and are stimulated by BAFF.

  • Maha M Bakhuraysah‎ et al.
  • Scientific reports‎
  • 2021‎

We have previously reported evidence that Nogo-A activation of Nogo-receptor 1 (NgR1) can drive axonal dystrophy during the neurological progression of experimental autoimmune encephalomyelitis (EAE). However, the B-cell activating factor (BAFF/BlyS) may also be an important ligand of NgR during neuroinflammation. In the current study we define that NgR1 and its homologs may contribute to immune cell signaling during EAE. Meningeal B-cells expressing NgR1 and NgR3 were identified within the lumbosacral spinal cords of ngr1+/+ EAE-induced mice at clinical score 1. Furthermore, increased secretion of immunoglobulins that bound to central nervous system myelin were shown to be generated from isolated NgR1- and NgR3-expressing B-cells of ngr1+/+ EAE-induced mice. In vitro BAFF stimulation of NgR1- and NgR3-expressing B cells, directed them into the cell cycle DNA synthesis phase. However, when we antagonized BAFF signaling by co-incubation with recombinant BAFF-R, NgR1-Fc, or NgR3 peptides, the B cells remained in the G0/G1 phase. The data suggest that B cells express NgR1 and NgR3 during EAE, being localized to infiltrates of the meninges and that their regulation is governed by BAFF signaling.


Overcoming Monocarboxylate Transporter 8 (MCT8)-Deficiency to Promote Human Oligodendrocyte Differentiation and Myelination.

  • Jae Young Lee‎ et al.
  • EBioMedicine‎
  • 2017‎

Cell membrane thyroid hormone (TH) transport can be facilitated by the monocarboxylate transporter 8 (MCT8), encoded by the solute carrier family 16 member 2 (SLC16A2) gene. Human mutations of the gene, SLC16A2, result in the X-linked-inherited psychomotor retardation and hypomyelination disorder, Allan-Herndon-Dudley syndrome (AHDS). We posited that abrogating MCT8-dependent TH transport limits oligodendrogenesis and myelination. We show that human oligodendrocytes (OL), derived from the NKX2.1-GFP human embryonic stem cell (hESC) reporter line, express MCT8. Moreover, treatment of these cultures with DITPA (an MCT8-independent TH analog), up-regulates OL differentiation transcription factors and myelin gene expression. DITPA promotes hESC-derived OL myelination of retinal ganglion axons in co-culture. Pharmacological and genetic blockade of MCT8 induces significant OL apoptosis, impairing myelination. DITPA treatment limits OL apoptosis mediated by SLC16A2 down-regulation primarily signaling through AKT phosphorylation, driving myelination. Our results highlight the potential role of MCT8 in TH transport for human OL development and may implicate DITPA as a promising treatment for developmentally-regulated myelination in AHDS.


Nogo receptor-Fc delivered by haematopoietic cells enhances neurorepair in a multiple sclerosis model.

  • Sining Ye‎ et al.
  • Brain communications‎
  • 2023‎

Nogo receptor 1 is the high affinity receptor for the potent myelin-associated inhibitory factors that make up part of the inflammatory extracellular milieu during experimental autoimmune encephalomyelitis. Signalling through the Nogo receptor 1 complex has been shown to be associated with axonal degeneration in an animal model of multiple sclerosis, and neuronal deletion of this receptor homologue, in a disease specific manner, is associated with preserving axons even in the context of neuroinflammation. The local delivery of Nogo receptor(1-310)-Fc, a therapeutic fusion protein, has been successfully applied as a treatment in animal models of spinal cord injury and glaucoma. As multiple sclerosis and experimental autoimmune encephalomyelitis exhibit large numbers of inflammatory cell infiltrates within the CNS lesions, we utilized transplantable haematopoietic stem cells as a cellular delivery method of the Nogo receptor(1-310)-Fc fusion protein. We identified CNS-infiltrating macrophages as the predominant immune-positive cell type that overexpressed myc-tagged Nogo receptor(1-310)-Fc fusion protein at the peak stage of experimental autoimmune encephalomyelitis. These differentiated phagocytes were predominant during the extensive demyelination and axonal damage, which are associated with the engulfment of the protein complex of Nogo receptor(1-310)-Fc binding to myelin ligands. Importantly, mice transplanted with haematopoietic stem cells transduced with the lentiviral vector carrying Nogo receptor(1-310)-Fc and recovered from the peak of neurological decline during experimental autoimmune encephalomyelitis, exhibiting axonal regeneration and eventual remyelination in the white matter tracts. There were no immunomodulatory effects of the transplanted, genetically modified haematopoietic stem cells on immune cell lineages of recipient female mice induced with experimental autoimmune encephalomyelitis. We propose that cellular delivery of Nogo receptor(1-310)-Fc fusion protein through genetically modified haematopoietic stem cells can modulate multifocal experimental autoimmune encephalomyelitis lesions and potentiate neurological recovery.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: