Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1.

  • Nevena V Dimova‎ et al.
  • Nature cell biology‎
  • 2012‎

The anaphase-promoting complex or cyclosome (APC/C) initiates mitotic exit by ubiquitylating cell-cycle regulators such as cyclin B1 and securin. Lys 48-linked ubiquitin chains represent the canonical signal targeting proteins for degradation by the proteasome, but they are not required for the degradation of cyclin B1. Lys 11-linked ubiquitin chains have been implicated in degradation of APC/C substrates, but the Lys 11-chain-forming E2 UBE2S is not essential for mitotic exit, raising questions about the nature of the ubiquitin signal that targets APC/C substrates for degradation. Here we demonstrate that multiple monoubiquitylation of cyclin B1, catalysed by UBCH10 or UBC4/5, is sufficient to target cyclin B1 for destruction by the proteasome. When the number of ubiquitylatable lysines in cyclin B1 is restricted, Lys 11-linked ubiquitin polymers elaborated by UBE2S become increasingly important. We therefore explain how a substrate that contains multiple ubiquitin acceptor sites confers flexibility in the requirement for particular E2 enzymes in modulating the rate of ubiquitin-dependent proteolysis.


PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia.

  • Robert S Banh‎ et al.
  • Nature cell biology‎
  • 2016‎

Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor (HIF) controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-tyrosine phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, although the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2(+) xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2(+) BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The moyamoya disease gene product RNF213, an E3 ligase, is negatively regulated by PTP1B in HER2(+) BC cells. RNF213 knockdown reverses the effects of PTP1B deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2(+) BC cells, and partially restores tumorigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2(+) BC, and possibly other malignancies, in the hypoxic tumour microenvironment.


LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control of pluripotency.

  • Kaloyan M Tsanov‎ et al.
  • Nature cell biology‎
  • 2017‎

Signalling and post-transcriptional gene control are both critical for the regulation of pluripotency, yet how they are integrated to influence cell identity remains poorly understood. LIN28 (also known as LIN28A), a highly conserved RNA-binding protein, has emerged as a central post-transcriptional regulator of cell fate through blockade of let-7 microRNA biogenesis and direct modulation of mRNA translation. Here we show that LIN28 is phosphorylated by MAPK/ERK in pluripotent stem cells, which increases its levels via post-translational stabilization. LIN28 phosphorylation had little impact on let-7 but enhanced the effect of LIN28 on its direct mRNA targets, revealing a mechanism that uncouples LIN28's let-7-dependent and -independent activities. We have linked this mechanism to the induction of pluripotency by somatic cell reprogramming and the transition from naive to primed pluripotency. Collectively, our findings indicate that MAPK/ERK directly impacts LIN28, defining an axis that connects signalling, post-transcriptional gene control, and cell fate regulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: