Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Lineage-specific biology revealed by a finished genome assembly of the mouse.

  • Deanna M Church‎ et al.
  • PLoS biology‎
  • 2009‎

The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.


Controversy of physiological vs. pharmacological effects of BMP signaling: Constitutive activation of BMP type IA receptor-dependent signaling in osteoblast lineage enhances bone formation and resorption, not affecting net bone mass.

  • Nobuhiro Kamiya‎ et al.
  • Bone‎
  • 2020‎

Bone morphogenetic proteins (BMPs) were first described over 50 years ago as potent inducers of ectopic bone formation when administrated subcutaneously. Preclinical studies have extensively examined the osteoinductive properties of BMPs in vitro and new bone formation in vivo. BMPs (BMP-2, BMP-7) have been used in orthopedics over 15 years. While osteogenic function of BMPs has been widely accepted, our previous studies demonstrated that loss-of-function of BMP receptor type IA (BMPR1A), a potent receptor for BMP-2, increased net bone mass by significantly inhibiting bone resorption in mice, indicating a positive role of BMP signaling in bone resorption. The physiological role of BMPs (i.e. osteogenic vs. osteoclastogenic) is still largely unknown. The purpose of this study was to investigate the physiological role of BMP signaling in endogenous long bones during adult stages. For this purpose, we conditionally and constitutively activated the Smad-dependent canonical BMP signaling thorough BMPR1A in osteoblast lineage cells using the mutant mice (Col1CreER™:caBmpr1a). Because trabecular bones were largely increased in the loss-of-function mouse study for BMPR1A, we hypothesized that the augmented BMP signaling would affect endogenous trabecular bones. In the mutant bones, the Smad phosphorylation was enhanced within physiological level three-fold while the resulting gross morphology, bodyweights, bone mass/shape/length, serum calcium/phosphorus levels, collagen cross-link patterns, and healing capability were all unchanged. Interestingly, we found; 1) increased expressions of both bone formation and resorption markers in femoral bones, 2) increased osteoblast and osteoclast numbers together with dynamic bone formation parameters by trabecular bone histomorphometry, 3) modest bone architectural phenotype with reduced bone quality (i.e. reduced trabecular bone connectivity, larger diametric size but reduced cortical bone thickness, and reduced bone mechanical strength), and 4) increased expression of SOST, a downstream target of the Smad-dependent BMPR1A signaling, in the mutant bones. This study is clinically insightful because gain-of-function of BMP signaling within a physiological window does not increase bone mass while it alters molecular and cellular aspects of osteoblast and osteoclast functions as predicted. These findings help explain the high-doses of BMPs (i.e. pharmacological level) in clinical settings required to substantially induce a bone formation, concurrent with potential unexpected side effects (i.e. bone resorption, inflammation) presumably due to a broader population of cell-types exposed to the high-dose BMPs rather than osteoblastic lineage cells.


Loss of BMP signaling mediated by BMPR1A in osteoblasts leads to differential bone phenotypes in mice depending on anatomical location of the bones.

  • Honghao Zhang‎ et al.
  • Bone‎
  • 2020‎

Bone morphogenetic protein (BMP) signaling in osteoblasts plays critical roles in skeletal development and bone homeostasis. Our previous studies showed loss of function of BMPR1A, one of the type 1 receptors for BMPs, in osteoblasts results in increased trabecular bone mass in long bones due to an imbalance between bone formation and bone resorption. Decreased bone resorption was associated with an increased mature-to-immature collagen cross-link ratio and mineral-matrix ratios in the trabecular compartments, and increased tissue-level biomechanical properties. Here, we investigated the bone mass, bone composition and biomechanical properties of ribs and spines in the same genetically altered mouse line to compare outcomes by loss of BMPR1A functions in bones from different anatomic sites and developmental origins. Bone mass was significantly increased in both cortical and trabecular compartments of ribs with minimal to modest changes in compositions. While tissue-levels of biomechanical properties were not changed between control and mutant animals, whole bone levels of biomechanical properties were significantly increased in association with increased bone mass in the mutant ribs. For spines, mutant bones showed increased bone mass in both cortical and trabecular compartments with an increase of mineral content. These results emphasize the differential role of BMP signaling in osteoblasts in bones depending on their anatomical locations, functional loading requirements and developmental origin.


Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species.

  • Keith R Bradnam‎ et al.
  • GigaScience‎
  • 2013‎

The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.


Discovery of structural alterations in solid tumor oligodendroglioma by single molecule analysis.

  • Mohana Ray‎ et al.
  • BMC genomics‎
  • 2013‎

Solid tumors present a panoply of genomic alterations, from single base changes to the gain or loss of entire chromosomes. Although aberrations at the two extremes of this spectrum are readily defined, comprehensive discernment of the complex and disperse mutational spectrum of cancer genomes remains a significant challenge for current genome analysis platforms. In this context, high throughput, single molecule platforms like Optical Mapping offer a unique perspective.


Interventions to Disrupt Coronavirus Disease Transmission at a University, Wisconsin, USA, August-October 2020.

  • Dustin W Currie‎ et al.
  • Emerging infectious diseases‎
  • 2021‎

University settings have demonstrated potential for coronavirus disease (COVID-19) outbreaks; they combine congregate living, substantial social activity, and a young population predisposed to mild illness. Using genomic and epidemiologic data, we describe a COVID-19 outbreak at the University of Wisconsin-Madison, Madison, Wisconsin, USA. During August-October 2020, a total of 3,485 students, including 856/6,162 students living in dormitories, tested positive. Case counts began rising during move-in week, August 25-31, 2020, then rose rapidly during September 1-11, 2020. The university initiated multiple prevention efforts, including quarantining 2 dormitories; a subsequent decline in cases was observed. Genomic surveillance of cases from Dane County, in which the university is located, did not find evidence of transmission from a large cluster of cases in the 2 quarantined dorms during the outbreak. Coordinated implementation of prevention measures can reduce COVID-19 spread in university settings and may limit spillover to the surrounding community.


Optical mapping discerns genome wide DNA methylation profiles.

  • Gene E Ananiev‎ et al.
  • BMC molecular biology‎
  • 2008‎

Methylation of CpG dinucleotides is a fundamental mechanism of epigenetic regulation in eukaryotic genomes. Development of methods for rapid genome wide methylation profiling will greatly facilitate both hypothesis and discovery driven research in the field of epigenetics. In this regard, a single molecule approach to methylation profiling offers several unique advantages that include elimination of chemical DNA modification steps and PCR amplification.


Development and characterization of patient-derived xenografts from non-small cell lung cancer brain metastases.

  • Andrew M Baschnagel‎ et al.
  • Scientific reports‎
  • 2021‎

Non-small cell lung cancer (NSCLC) brain metastasis cell lines and in vivo models are not widely accessible. Herein we report on a direct-from patient-derived xenograft (PDX) model system of NSCLC brain metastases with genomic annotation useful for translational and mechanistic studies. Both heterotopic and orthotopic intracranial xenografts were established and RNA and DNA sequencing was performed on patient and matching tumors. Morphologically, strong retention of cytoarchitectural features was observed between original patient tumors and PDXs. Transcriptome and mutation analysis revealed high correlation between matched patient and PDX samples with more than more than 95% of variants detected being retained in the matched PDXs. PDXs demonstrated response to radiation, response to selumetinib in tumors harboring KRAS G12C mutations and response to savolitinib in a tumor with MET exon 14 skipping mutation. Savolitinib also demonstrated in vivo radiation enhancement in our MET exon 14 mutated PDX. Early passage cell strains showed high consistency between patient and PDX tumors. Together, these data describe a robust human xenograft model system for investigating NSCLC brain metastases. These PDXs and cell lines show strong phenotypic and molecular correlation with the original patient tumors and provide a valuable resource for testing preclinical therapeutics.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: