Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Developmental sex differences in nicotinic currents of prefrontal layer VI neurons in mice and rats.

  • Nyresa C Alves‎ et al.
  • PloS one‎
  • 2010‎

There is a large sex difference in the prevalence of attention deficit disorder; yet, relatively little is known about sex differences in the development of prefrontal attention circuitry. In male rats, nicotinic acetylcholine receptors excite corticothalamic neurons in layer VI, which are thought to play an important role in attention by gating the sensitivity of thalamic neurons to incoming stimuli. These nicotinic currents in male rats are significantly larger during the first postnatal month when prefrontal circuitry is maturing. The present study was undertaken to investigate whether there are sex differences in the nicotinic currents in prefrontal layer VI neurons during development.


Serotonergic Suppression of Mouse Prefrontal Circuits Implicated in Task Attention.

  • Michael K Tian‎ et al.
  • eNeuro‎
  • 2016‎

Serotonin (5-HT) regulates attention by neurobiological mechanisms that are not well understood. Layer 6 (L6) pyramidal neurons of prefrontal cortex play an important role in attention and express 5-HT receptors, but the serotonergic modulation of this layer and its excitatory output is not known. Here, we performed whole-cell recordings and pharmacological manipulations in acute brain slices from wild-type and transgenic mice expressing either eGFP or eGFP-channelrhodopsin in prefrontal L6 pyramidal neurons. Excitatory circuits between L6 pyramidal neurons and L5 GABAergic interneurons, including a population of interneurons essential for task attention, were investigated using optogenetic techniques. Our experiments show that prefrontal L6 pyramidal neurons are subject to strong serotonergic inhibition and demonstrate direct 5-HT-sensitive connections between prefrontal L6 pyramidal neurons and two classes of L5 interneurons. This work helps to build a neurobiological framework to appreciate serotonergic disruption of task attention and yields insight into the disruptions of attention observed in psychiatric disorders with altered 5-HT receptors and signaling.


Opposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex.

  • Daniel W Sparks‎ et al.
  • Frontiers in neural circuits‎
  • 2017‎

Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh) and serotonin (5-HT) have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.


Mapping the physiological and molecular markers of stress and SSRI antidepressant treatment in S100a10 corticostriatal neurons.

  • Derya Sargin‎ et al.
  • Molecular psychiatry‎
  • 2020‎

In mood disorders, psychomotor and sensory abnormalities are prevalent, disabling, and intertwined with emotional and cognitive symptoms. Corticostriatal neurons in motor and somatosensory cortex are implicated in these symptoms, yet mechanisms of their vulnerability are unknown. Here, we demonstrate that S100a10 corticostriatal neurons exhibit distinct serotonin responses and have increased excitability, compared with S100a10-negative neurons. We reveal that prolonged social isolation disrupts the specific serotonin response which gets restored by chronic antidepressant treatment. We identify cell-type-specific transcriptional signatures in S100a10 neurons that contribute to serotonin responses and strongly associate with psychomotor and somatosensory function. Our studies provide a strong framework to understand the pathogenesis and create new avenues for the treatment of mood disorders.


Consequences of NMDA receptor deficiency can be rescued in the adult brain.

  • Catharine A Mielnik‎ et al.
  • Molecular psychiatry‎
  • 2021‎

N-methyl-D-aspartate receptors (NMDARs) are required to shape activity-dependent connections in the developing and adult brain. Impaired NMDAR signalling through genetic or environmental insults causes a constellation of neurodevelopmental disorders that manifest as intellectual disability, epilepsy, autism, or schizophrenia. It is not clear whether the developmental impacts of NMDAR dysfunction can be overcome by interventions in adulthood. This question is paramount for neurodevelopmental disorders arising from mutations that occur in the GRIN genes, which encode NMDAR subunits, and the broader set of mutations that disrupt NMDAR function. We developed a mouse model where a congenital loss-of-function allele of Grin1 can be restored to wild type by gene editing with Cre recombinase. Rescue of NMDARs in adult mice yields surprisingly robust improvements in cognitive functions, including those that are refractory to treatment with current medications. These results suggest that neurodevelopmental disorders arising from NMDAR deficiency can be effectively treated in adults.


Xanomeline restores endogenous nicotinic acetylcholine receptor signaling in mouse prefrontal cortex.

  • Saige K Power‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2023‎

Cholinergic synapses in prefrontal cortex are vital for attention, but this modulatory system undergoes substantial pre- and post-synaptic alterations during adulthood. To examine the integrated impact of these changes, we optophysiologically probe cholinergic synapses ex vivo, revealing a clear decline in neurotransmission in middle adulthood. Pharmacological dissection of synaptic components reveals a selective reduction in postsynaptic nicotinic receptor currents. Other components of cholinergic synapses appear stable, by contrast, including acetylcholine autoinhibition, metabolism, and excitation of postsynaptic muscarinic receptors. Pursuing strategies to strengthen cholinergic neurotransmission, we find that positive allosteric modulation of nicotinic receptors with NS9283 is effective in young adults but wanes with age. To boost nicotinic receptor availability, we harness the second messenger pathways of the preserved excitatory muscarinic receptors with xanomeline. This muscarinic agonist and cognitive-enhancer restores nicotinic signaling in older mice significantly, in a muscarinic- and PKC-dependent manner. The rescued nicotinic component regains youthful sensitivity to allosteric enhancement: treatment with xanomeline and NS9283 restores cholinergic synapses in older mice to the strength, speed, and receptor mechanism of young adults. Our results reveal a new and efficient strategy to rescue age-related nicotinic signaling deficits, demonstrating a novel pathway for xanomeline to restore cognitively-essential endogenous cholinergic neurotransmission.


Enhanced prefrontal serotonin 5-HT(1A) currents in a mouse model of Williams-Beuren syndrome with low innate anxiety.

  • Eliane Proulx‎ et al.
  • Journal of neurodevelopmental disorders‎
  • 2010‎

Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by the hemizygous deletion of 28 genes on chromosome 7, including the general transcription factor GTF2IRD1. Mice either hemizygously (Gtf2ird1(+/-)) or homozygously (Gtf2ird1(-/-)) deleted for this transcription factor exhibit low innate anxiety, low aggression and increased social interaction, a phenotype that shares similarities to the high sociability and disinhibition seen in individuals with WBS. Here, we investigated the inhibitory effects of serotonin (5-HT) on the major output neurons of the prefrontal cortex in Gtf2ird1(-/-) mice and their wildtype (WT) siblings. Prefrontal 5-HT receptors are known to modulate anxiety-like behaviors, and the Gtf2ird1(-/-) mice have altered 5-HT metabolism in prefrontal cortex. Using whole cell recording from layer V neurons in acute brain slices of prefrontal cortex, we found that 5-HT elicited significantly larger inhibitory, outward currents in Gtf2ird1(-/-) mice than in WT controls. In both genotypes, these currents were resistant to action potential blockade with TTX and were suppressed by the selective 5-HT(1A) receptor antagonist WAY-100635, suggesting that they are mediated directly by 5-HT(1A) receptors on the recorded neurons. Control experiments suggest a degree of layer and receptor specificity in this enhancement since 5-HT(1A) receptor-mediated responses in layer II/III pyramidal neurons were unchanged as were responses mediated by two other inhibitory receptors in layer V pyramidal neurons. Furthermore, we demonstrate GTF2IRD1 protein expression by neurons in layer V of the prefrontal cortex. Our finding that 5-HT(1A)-mediated responses are selectively enhanced in layer V pyramidal neurons of Gtf2ird1(-/-) mice gives insight into the cellular mechanisms that underlie reduced innate anxiety and increased sociability in these mice, and may be relevant to the low social anxiety and disinhibition in patients with WBS and their sensitivity to serotonergic medicines. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11689-010-9044-5) contains supplementary material, which is available to authorized users.


Serotonin receptor expression in human prefrontal cortex: balancing excitation and inhibition across postnatal development.

  • Evelyn K Lambe‎ et al.
  • PloS one‎
  • 2011‎

Serotonin and its receptors (HTRs) play critical roles in brain development and in the regulation of cognition, mood, and anxiety. HTRs are highly expressed in human prefrontal cortex and exert control over prefrontal excitability. The serotonin system is a key treatment target for several psychiatric disorders; however, the effectiveness of these drugs varies according to age. Despite strong evidence for developmental changes in prefrontal Htrs of rodents, the developmental regulation of HTR expression in human prefrontal cortex has not been examined. Using postmortem human prefrontal brain tissue from across postnatal life, we investigated the expression of key serotonin receptors with distinct inhibitory (HTR1A, HTR5A) and excitatory (HTR2A, HTR2C, HTR4, HTR6) effects on cortical neurons, including two receptors which appear to be expressed to a greater degree in inhibitory interneurons of cerebral cortex (HTR2C, HTR6). We found distinct developmental patterns of expression for each of these six HTRs, with profound changes in expression occurring early in postnatal development and also into adulthood. However, a collective look at these HTRs in terms of their likely neurophysiological effects and major cellular localization leads to a model that suggests developmental changes in expression of these individual HTRs may not perturb an overall balance between inhibitory and excitatory effects. Examining and understanding the healthy balance is critical to appreciate how abnormal expression of an individual HTR may create a window of vulnerability for the emergence of psychiatric illness.


Chronic social isolation reduces 5-HT neuronal activity via upregulated SK3 calcium-activated potassium channels.

  • Derya Sargin‎ et al.
  • eLife‎
  • 2016‎

The activity of serotonin (5-HT) neurons is critical for mood regulation. In a mouse model of chronic social isolation, a known risk factor for depressive illness, we show that 5-HT neurons in the dorsal raphe nucleus are less responsive to stimulation. Probing the responsible cellular mechanisms pinpoints a disturbance in the expression and function of small-conductance Ca2+-activated K+ (SK) channels and reveals an important role for both SK2 and SK3 channels in normal regulation of 5-HT neuronal excitability. Chronic social isolation renders 5-HT neurons insensitive to SK2 blockade, however inhibition of the upregulated SK3 channels restores normal excitability. In vivo, we demonstrate that inhibiting SK channels normalizes chronic social isolation-induced anxiety/depressive-like behaviors. Our experiments reveal a causal link for the first time between SK channel dysregulation and 5-HT neuron activity in a lifelong stress paradigm, suggesting these channels as targets for the development of novel therapies for mood disorders.


Chronic social isolation exerts opposing sex-specific consequences on serotonin neuronal excitability and behaviour.

  • David K Oliver‎ et al.
  • Neuropharmacology‎
  • 2020‎

Social isolation raises the risk for mood disorders associated with serotonergic disruption. Yet, the underlying mechanisms by which the stress of social isolation increases risk are not well understood. Men and women are differently vulnerable; however, this modulating role of sex is challenging to study in humans under carefully controlled conditions. Therefore, we investigated this question in mice of both sexes, asking how the long-term stress of social isolation (from weaning into adulthood) affects the excitability of serotonin neurons in the dorsal raphe nucleus as well as mouse behaviour. The electrophysiological experiments and the first set of behavioural tests were conducted in young adult mice, with additional behavioural assays completed as the mice matured to assess the stability of their behavioural phenotype. We found that social isolation exerted seemingly-opposite effects in male and female mice, relative to their respective group-housed littermate controls. This distinctive pattern was observed for the effect of social isolation on the control of serotonergic neuron excitability via the SK family of calcium-activated potassium channels. Furthermore, we observed a similar and consistent pattern on tests relevant to assessing the efficacy of anti-depressant medicines, including the forced swim test, the novelty-suppressed feeding test, and the sucrose preference test. These findings underscore the concept that stress-elicited illness manifests distinctly in males and females and that treatments aimed at restoring serotonergic function may require a sex-specific approach. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.


CHRNA5 links chandelier cells to severity of amyloid pathology in aging and Alzheimer's disease.

  • Jonas Rybnicek‎ et al.
  • Translational psychiatry‎
  • 2024‎

Changes in high-affinity nicotinic acetylcholine receptors are intricately connected to neuropathology in Alzheimer's Disease (AD). Protective and cognitive-enhancing roles for the nicotinic α5 subunit have been identified, but this gene has not been closely examined in the context of human aging and dementia. Therefore, we investigate the nicotinic α5 gene CHRNA5 and the impact of relevant single nucleotide polymorphisms (SNPs) in prefrontal cortex from 922 individuals with matched genotypic and post-mortem RNA sequencing in the Religious Orders Study and Memory and Aging Project (ROS/MAP). We find that a genotype robustly linked to increased expression of CHRNA5 (rs1979905A2) predicts significantly reduced cortical β-amyloid load. Intriguingly, co-expression analysis suggests CHRNA5 has a distinct cellular expression profile compared to other nicotinic receptor genes. Consistent with this prediction, single nucleus RNA sequencing from 22 individuals reveals CHRNA5 expression is disproportionately elevated in chandelier neurons, a distinct subtype of inhibitory neuron known for its role in excitatory/inhibitory (E/I) balance. We show that chandelier neurons are enriched in amyloid-binding proteins compared to basket cells, the other major subtype of PVALB-positive interneurons. Consistent with the hypothesis that nicotinic receptors in chandelier cells normally protect against β-amyloid, cell-type proportion analysis from 549 individuals reveals these neurons show amyloid-associated vulnerability only in individuals with impaired function/trafficking of nicotinic α5-containing receptors due to homozygosity of the missense CHRNA5 SNP (rs16969968A2). Taken together, these findings suggest that CHRNA5 and its nicotinic α5 subunit exert a neuroprotective role in aging and Alzheimer's disease centered on chandelier interneurons.


Ventral hippocampal cholecystokinin interneurons gate contextual reward memory.

  • Robin Nguyen‎ et al.
  • iScience‎
  • 2024‎

Associating contexts with rewards depends on hippocampal circuits, with local inhibitory interneurons positioned to play an important role in shaping activity. Here, we demonstrate that the encoding of context-reward memory requires a ventral hippocampus (vHPC) to nucleus accumbens (NAc) circuit that is gated by cholecystokinin (CCK) interneurons. In a sucrose conditioned place preference (CPP) task, optogenetically inhibiting vHPC-NAc terminals impaired the acquisition of place preference. Transsynaptic rabies tracing revealed vHPC-NAc neurons were monosynaptically innervated by CCK interneurons. Using intersectional genetic targeting of CCK interneurons, ex vivo optogenetic activation of CCK interneurons increased GABAergic transmission onto vHPC-NAc neurons, while in vivo optogenetic inhibition of CCK interneurons increased cFos in these projection neurons. Notably, CCK interneuron inhibition during sucrose CPP learning increased time spent in the sucrose-associated location, suggesting enhanced place-reward memory. Our findings reveal a previously unknown hippocampal microcircuit crucial for modulating the strength of contextual reward learning.


Chrna5 genotype determines the long-lasting effects of developmental in vivo nicotine exposure on prefrontal attention circuitry.

  • Craig D C Bailey‎ et al.
  • Neuropharmacology‎
  • 2014‎

Maternal smoking during pregnancy repeatedly exposes the developing fetus to nicotine and is linked with attention deficits in offspring. Corticothalamic neurons within layer VI of the medial prefrontal cortex are potential targets in the disruption of attention circuitry by nicotine, a process termed teratogenesis. These prefrontal layer VI neurons would be likely targets because they are developmentally excited and morphologically sculpted by a population of nicotinic acetylcholine receptors (nAChRs) that are sensitive to activation and/or desensitization by nicotine. The maturational effects of these α4β2* nAChRs and their susceptibility to desensitization are both profoundly altered by the incorporation of an α5 subunit, encoded by the chrna5 gene. Here, we investigate nicotine teratogenesis in layer VI neurons of wildtype and α5(-/-) mice. In vivo chronic nicotine exposure during development significantly modified apical dendrite morphology and nAChR currents, compared with vehicle control. The direction of the changes was dependent on chrna5 genotype. Surprisingly, neurons from wildtype mice treated with in vivo nicotine resembled those from α5(-/-) mice treated with vehicle, maintaining into adulthood a morphological phenotype characteristic of immature mice together with reduced nAChR currents. In α5(-/-) mice, however, developmental in vivo nicotine tended to normalize both adult morphology and nAChR currents. These findings suggest that chrna5 genotype can determine the effect of developmental in vivo nicotine on the prefrontal cortex. In wildtype mice, the lasting alterations to the morphology and nAChR activation of prefrontal layer VI neurons are teratogenic changes consistent with the attention deficits observed following developmental nicotine exposure.


Dendritic spine density of prefrontal layer 6 pyramidal neurons in relation to apical dendrite sculpting by nicotinic acetylcholine receptors.

  • Lily Kang‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2015‎

Prefrontal layer 6 (L6) pyramidal neurons play an important role in the adult control of attention, facilitated by their strong activation by nicotinic acetylcholine receptors. These neurons in mouse association cortex are distinctive morphologically when compared to L6 neurons in primary cortical regions. Roughly equal proportions of the prefrontal L6 neurons have apical dendrites that are "long" (reaching to the pial surface) vs. "short" (terminating in the deep layers, as in primary cortical regions). This distinct prefrontal morphological pattern is established in the post-juvenile period and appears dependent on nicotinic receptors. Here, we examine dendritic spine densities in these two subgroups of prefrontal L6 pyramidal neurons under control conditions as well as after perturbation of nicotinic acetylcholine receptors. In control mice, the long neurons have significantly greater apical and basal dendritic spine density compared to the short neurons. Furthermore, manipulations of nicotinic receptors (chrna5 deletion or chronic developmental nicotine exposure) have distinct effects on these two subgroups of L6 neurons: apical spine density is significantly reduced in long neurons, and basal spine density is significantly increased in short neurons. These changes appear dependent on the α5 nicotinic subunit encoded by chrna5. Overall, the two subgroups of prefrontal L6 neurons appear positioned to integrate information either across cortex (long neurons) or within the deep layers (short neurons), and nicotinic perturbations differently alter spine density within each subgroup.


Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified thalamocortical boutons in prefrontal slice.

  • Evelyn K Lambe‎ et al.
  • Neuron‎
  • 2003‎

In vivo, thalamocortical axons are susceptible to the generation of terminal spikes which antidromically promote bursting in the thalamus. Although neurotransmitters could elicit such ectopic action potentials at thalamocortical boutons, this hypothesis has never been confirmed. Prefrontal cortex is the cortical area most implicated in arousal and is innervated by thalamic neurons that are unusual since they burst rhythmically during waking. We show that a neurotransmitter critical for alertness, hypocretin (orexin), directly excites prefrontal thalamocortical synapses in acute slice. This TTX-sensitive activation of thalamic axons was demonstrated electrophysiologically and by two-photon sampling of calcium transients at single spines in apposition to thalamic boutons anterogradely labeled in vivo. Spines receiving these long-range projections constituted a unique population in terms of the presynaptic excitatory action of hypocretin. By this mechanism, the hypocretin projection to prefrontal cortex may play a larger role in prefrontal or "executive" aspects of alertness and attention than previously anticipated.


Deficits in integrative NMDA receptors caused by Grin1 disruption can be rescued in adulthood.

  • Sridevi Venkatesan‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2023‎

Glutamatergic NMDA receptors (NMDAR) are critical for cognitive function, and their reduced expression leads to intellectual disability. Since subpopulations of NMDARs exist in distinct subcellular environments, their functioning may be unevenly vulnerable to genetic disruption. Here, we investigate synaptic and extrasynaptic NMDARs on the major output neurons of the prefrontal cortex in mice deficient for the obligate NMDAR subunit encoded by Grin1 and wild-type littermates. With whole-cell recording in brain slices, we find that single, low-intensity stimuli elicit surprisingly-similar glutamatergic synaptic currents in both genotypes. By contrast, clear genotype differences emerge with manipulations that recruit extrasynaptic NMDARs, including stronger, repetitive, or pharmacological stimulation. These results reveal a disproportionate functional deficit of extrasynaptic NMDARs compared to their synaptic counterparts. To probe the repercussions of this deficit, we examine an NMDAR-dependent phenomenon considered a building block of cognitive integration, basal dendrite plateau potentials. Since we find this phenomenon is readily evoked in wild-type but not in Grin1-deficient mice, we ask whether plateau potentials can be restored by an adult intervention to increase Grin1 expression. This genetic manipulation, previously shown to restore cognitive performance in adulthood, successfully rescues electrically-evoked basal dendrite plateau potentials after a lifetime of NMDAR compromise. Taken together, our work demonstrates NMDAR subpopulations are not uniformly vulnerable to the genetic disruption of their obligate subunit. Furthermore, the window for functional rescue of the more-sensitive integrative NMDARs remains open into adulthood.


Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation or Nicotine Exposure.

  • Glenn Morton‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

Genetic studies have shown an association between smoking and variation at the CHRNA5/A3/B4 gene locus encoding the α5, α3, and β4 nicotinic receptor subunits. The α5 receptor has been specifically implicated because smoking-associated haplotypes contain a coding variant in the CHRNA5 gene. The Chrna5/a3/b4 locus is conserved in rodents and the restricted expression of these subunits suggests neural pathways through which the reinforcing and aversive properties of nicotine may be mediated. Here, we show that, in the interpeduncular nucleus (IP), the site of the highest Chrna5 mRNA expression in rodents, electrophysiological responses to nicotinic acetylcholine receptor stimulation are markedly reduced in α5-null mice. IP neurons differ markedly from their upstream ventral medial habenula cholinergic partners, which appear unaltered by loss of α5. To probe the functional role of α5-containing IP neurons, we used BAC recombineering to generate transgenic mice expressing Cre-recombinase from the Chrna5 locus. Reporter expression driven by Chrna5Cre demonstrates that transcription of Chrna5 is regulated independently from the Chrna3/b4 genes transcribed on the opposite strand. Chrna5-expressing IP neurons are GABAergic and project to distant targets in the mesopontine raphe and tegmentum rather than forming local circuits. Optogenetic stimulation of Chrna5-expressing IP neurons failed to elicit physical manifestations of withdrawal. However, after recent prior stimulation or exposure to nicotine, IP stimulation becomes aversive. These results using mice of both sexes support the idea that the risk allele of CHRNA5 may increase the drive to smoke via loss of IP-mediated nicotine aversion.SIGNIFICANCE STATEMENT Understanding the receptors and neural pathways underlying the reinforcing and aversive effects of nicotine may suggest new treatments for tobacco addiction. Part of the individual variability in smoking is associated with specific forms of the α5 nicotinic receptor subunit gene. Here, we show that deletion of the α5 subunit in mice markedly reduces the cellular response to nicotine and acetylcholine in the interpeduncular nucleus (IP). Stimulation of α5-expressing IP neurons using optogenetics is aversive, but this effect requires priming by recent prior stimulation or exposure to nicotine. These results support the idea that the smoking-associated variant of the α5 gene may increase the drive to smoke via loss of IP-mediated nicotine aversion.


Somatodendritic autoreceptor regulation of serotonergic neurons: dependence on L-tryptophan and tryptophan hydroxylase-activating kinases.

  • Rong-Jian Liu‎ et al.
  • The European journal of neuroscience‎
  • 2005‎

The somatodendritic 5-HT(1A) autoreceptor has been considered a major determinant of the output of the serotonin (5-HT) neuronal system. However, recent studies in brain slices from the dorsal raphe nucleus have questioned the relevance of 5-HT autoinhibition under physiological conditions. In the present study, we found that the difficulty in demonstrating 5-HT tonic autoinhibition in slice results from in vitro conditions that are unfavorable for sustaining 5-HT synthesis. Robust, tonic 5-HT(1A) autoinhibition can be restored by reinstating in vivo 5-HT synthesizing conditions with the initial 5-HT precursor l-tryptophan and the tryptophan hydroxylase co-factor tetrahydrobiopterin (BH(4)). The presence of tonic autoinhibition under these conditions was revealed by the disinhibitory effect of a low concentration of the 5-HT(1A) antagonist WAY 100635. Neurons showing an autoinhibitory response to L-tryptophan were confirmed immunohistochemically to be serotonergic. Once conditions for tonic autoinhibition had been established in raphe slice, we were able to show that 5-HT autoinhibition is critically regulated by the tryptophan hydroxylase-activating kinases calcium/calmodulin protein kinase II (CaMKII) and protein kinase A (PKA). In addition, at physiological concentrations of L-tryptophan, there was an augmentation of 5-HT(1A) receptor-mediated autoinhibition when the firing of 5-HT cells activated with increasing concentrations of the alpha(1) adrenoceptor agonist phenylephrine. Increased calcium influx at higher firing rates, by activating tryptophan hydroxylase via CaMKII and PKA, can work together with tryptophan to enhance negative feedback control of the output of the serotonergic system.


Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons.

  • Nailyam Nasirova‎ et al.
  • The Journal of comparative neurology‎
  • 2020‎

Cholinergic transmission shapes the maturation of glutamatergic circuits, yet the developmental sources of acetylcholine have not been systematically explored. Here, we have used Cre-recombinase-mediated genetic labeling to identify and map both mature and developing CNS neurons that express choline acetyltransferase (ChAT). Correction of a significant problem with a widely used ChatCre transgenic line ensures that this map does not contain expression artifacts. ChatCre marks all known cholinergic systems in the adult brain, but also identifies several brain areas not usually regarded as cholinergic, including specific thalamic and hypothalamic neurons, the subiculum, the lateral parabrachial nucleus, the cuneate/gracilis nuclei, and the pontocerebellar system. This ChatCre fate map suggests transient developmental expression of a cholinergic phenotype in areas important for cognition, motor control, and respiration. We therefore examined expression of ChAT and the vesicular acetylcholine transporter in the embryonic and early postnatal brain to determine the developmental timing of this transient cholinergic phenotype, and found that it mirrored the establishment of relevant glutamatergic projection pathways. We then used an intersectional genetic strategy combining ChatCre with Vglut2Flp to show that these neurons adopt a glutamatergic fate in the adult brain. The transient cholinergic phenotype of these glutamatergic neurons suggests a homosynaptic source of acetylcholine for the maturation of developing glutamatergic synapses. These findings thus define critical windows during which specific glutamatergic circuits may be vulnerable to disruption by nicotine in utero, and suggest new mechanisms for pediatric disorders associated with maternal smoking, such as sudden infant death syndrome.


Dopamine transporter blockade during adolescence increases adult dopamine function, impulsivity, and aggression.

  • Deepika Suri‎ et al.
  • Molecular psychiatry‎
  • 2023‎

Sensitive developmental periods shape neural circuits and enable adaptation. However, they also engender vulnerability to factors that can perturb developmental trajectories. An understanding of sensitive period phenomena and mechanisms separate from sensory system development is still lacking, yet critical to understanding disease etiology and risk. The dopamine system is pivotal in controlling and shaping adolescent behaviors, and it undergoes heightened plasticity during that time, such that interference with dopamine signaling can have long-lasting behavioral consequences. Here we sought to gain mechanistic insight into this dopamine-sensitive period and its impact on behavior. In mice, dopamine transporter (DAT) blockade from postnatal (P) day 22 to 41 increases aggression and sensitivity to amphetamine (AMPH) behavioral stimulation in adulthood. Here, we refined this sensitive window to P32-41 and identified increased firing of dopaminergic neurons in vitro and in vivo as a neural correlate to altered adult behavior. Aggression can result from enhanced impulsivity and cognitive dysfunction, and dopamine regulates working memory and motivated behavior. Hence, we assessed these behavioral domains and found that P32-41 DAT blockade increases impulsivity but has no effect on cognition, working memory, or motivation in adulthood. Lastly, using optogenetics to drive dopamine neurons, we find that increased VTA but not SNc dopaminergic activity mimics the increase in impulsive behavior in the Go/NoGo task observed after adolescent DAT blockade. Together our data provide insight into the developmental origins of aggression and impulsivity that may ultimately improve diagnosis, prevention, and treatment strategies for related neuropsychiatric disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: