Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 97 papers

The RCSB PDB "Molecule of the Month": Inspiring a Molecular View of Biology.

  • David S Goodsell‎ et al.
  • PLoS biology‎
  • 2015‎

The Research Collaboratory for Structural Bioinformatics (RCSB) Molecule of the Month series provides a curated introduction to the 3-D biomolecular structures available in the Protein Data Bank archive and the tools that are available at the RCSB website for accessing and exploring them. A variety of educational materials, such as articles, videos, posters, hands-on activities, lesson plans, and curricula, build on this series for use in a variety of educational settings as a general introduction to key topics, such as enzyme action, protein synthesis, and viruses. The series and associated educational materials are freely available at www.rcsb.org.


Identification of a Non-Gatekeeper Hot Spot for Drug-Resistant Mutations in mTOR Kinase.

  • Tzung-Ju Wu‎ et al.
  • Cell reports‎
  • 2015‎

Protein kinases are therapeutic targets for human cancer. However, "gatekeeper" mutations in tyrosine kinases cause acquired clinical resistance, limiting long-term treatment benefits. mTOR is a key cancer driver and drug target. Numerous small-molecule mTOR kinase inhibitors have been developed, with some already in human clinical trials. Given our clinical experience with targeted therapeutics, acquired drug resistance in mTOR is thought likely, but not yet documented. Herein, we describe identification of a hot spot (L2185) for drug-resistant mutations, which is distinct from the gatekeeper site, and a chemical scaffold refractory to drug-resistant mutations. We also provide new insights into mTOR kinase structure and function. The hot spot mutations are potentially useful as surrogate biomarkers for acquired drug resistance in ongoing clinical trials and future treatments and for the design of the next generation of mTOR-targeted drugs. Our study provides a foundation for further research into mTOR kinase function and targeting.


The RCSB Protein Data Bank: views of structural biology for basic and applied research and education.

  • Peter W Rose‎ et al.
  • Nucleic acids research‎
  • 2015‎

The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine.


How Structural Biologists and the Protein Data Bank Contributed to Recent FDA New Drug Approvals.

  • John D Westbrook‎ et al.
  • Structure (London, England : 1993)‎
  • 2019‎

Discovery and development of 210 new molecular entities (NMEs; new drugs) approved by the US Food and Drug Administration 2010-2016 was facilitated by 3D structural information generated by structural biologists worldwide and distributed on an open-access basis by the PDB. The molecular targets for 94% of these NMEs are known. The PDB archive contains 5,914 structures containing one of the known targets and/or a new drug, providing structural coverage for 88% of the recently approved NMEs across all therapeutic areas. More than half of the 5,914 structures were published and made available by the PDB at no charge, with no restrictions on usage >10 years before drug approval. Citation analyses revealed that these 5,914 PDB structures significantly affected the very large body of publicly funded research reported in publications on the NME targets that motivated biopharmaceutical company investment in discovery and development programs that produced the NMEs.


SOD1 Phosphorylation by mTORC1 Couples Nutrient Sensing and Redox Regulation.

  • Chi Kwan Tsang‎ et al.
  • Molecular cell‎
  • 2018‎

Nutrients are not only organic compounds fueling bioenergetics and biosynthesis, but also key chemical signals controlling growth and metabolism. Nutrients enormously impact the production of reactive oxygen species (ROS), which play essential roles in normal physiology and diseases. How nutrient signaling is integrated with redox regulation is an interesting, but not fully understood, question. Herein, we report that superoxide dismutase 1 (SOD1) is a conserved component of the mechanistic target of rapamycin complex 1 (mTORC1) nutrient signaling. mTORC1 regulates SOD1 activity through reversible phosphorylation at S39 in yeast and T40 in humans in response to nutrients, which moderates ROS level and prevents oxidative DNA damage. We further show that SOD1 activation enhances cancer cell survival and tumor formation in the ischemic tumor microenvironment and protects against the chemotherapeutic agent cisplatin. Collectively, these findings identify a conserved mechanism by which eukaryotes dynamically regulate redox homeostasis in response to changing nutrient conditions.


Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

  • Tony E Lewis‎ et al.
  • Nucleic acids research‎
  • 2013‎

Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).


The role of structural bioinformatics resources in the era of integrative structural biology.

  • Aleksandras Gutmanas‎ et al.
  • Acta crystallographica. Section D, Biological crystallography‎
  • 2013‎

The history and the current state of the PDB and EMDB archives is briefly described, as well as some of the challenges that they face. It seems natural that the role of structural biology archives will change from being a pure repository of historic data into becoming an indispensable resource for the wider biomedical community. As part of this transformation, it will be necessary to validate the biomacromolecular structure data and ensure the highest possible quality for the archive holdings, to combine structural data from different spatial scales into a unified resource and to integrate structural data with functional, genetic and taxonomic data as well as other information available in bioinformatics resources. Some recent developments and plans to address these challenges at PDBe are presented.


UniChem: a unified chemical structure cross-referencing and identifier tracking system.

  • Jon Chambers‎ et al.
  • Journal of cheminformatics‎
  • 2013‎

UniChem is a freely available compound identifier mapping service on the internet, designed to optimize the efficiency with which structure-based hyperlinks may be built and maintained between chemistry-based resources. In the past, the creation and maintenance of such links at EMBL-EBI, where several chemistry-based resources exist, has required independent efforts by each of the separate teams. These efforts were complicated by the different data models, release schedules, and differing business rules for compound normalization and identifier nomenclature that exist across the organization. UniChem, a large-scale, non-redundant database of Standard InChIs with pointers between these structures and chemical identifiers from all the separate chemistry resources, was developed as a means of efficiently sharing the maintenance overhead of creating these links. Thus, for each source represented in UniChem, all links to and from all other sources are automatically calculated and immediately available for all to use. Updated mappings are immediately available upon loading of new data releases from the sources. Web services in UniChem provide users with a single simple automatable mechanism for maintaining all links from their resource to all other sources represented in UniChem. In addition, functionality to track changes in identifier usage allows users to monitor which identifiers are current, and which are obsolete. Lastly, UniChem has been deliberately designed to allow additional resources to be included with minimal effort. Indeed, the recent inclusion of data sources external to EMBL-EBI has provided a simple means of providing users with an even wider selection of resources with which to link to, all at no extra cost, while at the same time providing a simple mechanism for external resources to link to all EMBL-EBI chemistry resources.


ModBase, a database of annotated comparative protein structure models, and associated resources.

  • Ursula Pieper‎ et al.
  • Nucleic acids research‎
  • 2011‎

ModBase (http://salilab.org/modbase) is a database of annotated comparative protein structure models. The models are calculated by ModPipe, an automated modeling pipeline that relies primarily on Modeller for fold assignment, sequence-structure alignment, model building and model assessment (http://salilab.org/modeller/). ModBase currently contains 10,355,444 reliable models for domains in 2,421,920 unique protein sequences. ModBase allows users to update comparative models on demand, and request modeling of additional sequences through an interface to the ModWeb modeling server (http://salilab.org/modweb). ModBase models are available through the ModBase interface as well as the Protein Model Portal (http://www.proteinmodelportal.org/). Recently developed associated resources include the SALIGN server for multiple sequence and structure alignment (http://salilab.org/salign), the ModEval server for predicting the accuracy of protein structure models (http://salilab.org/modeval), the PCSS server for predicting which peptides bind to a given protein (http://salilab.org/pcss) and the FoXS server for calculating and fitting Small Angle X-ray Scattering profiles (http://salilab.org/foxs).


Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.

  • Hal A Lewis‎ et al.
  • The EMBO journal‎
  • 2004‎

Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide-binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF-causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures for mouse NBD1 in unliganded, ADP- and ATP-bound states, with and without phosphorylation. This NBD1 differs from typical ABC domains in having added regulatory segments, a foreshortened subdomain interconnection, and an unusual nucleotide conformation. Moreover, isolated NBD1 has undetectable ATPase activity and its structure is essentially the same independent of ligand state. Phe508, which is commonly deleted in CF, is exposed at a putative NBD1-transmembrane interface. Our results are consistent with a CFTR mechanism, whereby channel gating occurs through ATP binding in an NBD1-NBD2 nucleotide sandwich that forms upon displacement of NBD1 regulatory segments.


Contributions to the NIH-NIGMS Protein Structure Initiative from the PSI Production Centers.

  • Stephen K Burley‎ et al.
  • Structure (London, England : 1993)‎
  • 2008‎

No abstract available


PDBe: towards reusable data delivery infrastructure at protein data bank in Europe.

  • Saqib Mir‎ et al.
  • Nucleic acids research‎
  • 2018‎

The Protein Data Bank in Europe (PDBe, pdbe.org) is actively engaged in the deposition, annotation, remediation, enrichment and dissemination of macromolecular structure data. This paper describes new developments and improvements at PDBe addressing three challenging areas: data enrichment, data dissemination and functional reusability. New features of the PDBe Web site are discussed, including a context dependent menu providing links to raw experimental data and improved presentation of structures solved by hybrid methods. The paper also summarizes the features of the LiteMol suite, which is a set of services enabling fast and interactive 3D visualization of structures, with associated experimental maps, annotations and quality assessment information. We introduce a library of Web components which can be easily reused to port data and functionality available at PDBe to other services. We also introduce updates to the SIFTS resource which maps PDB data to other bioinformatics resources, and the PDBe REST API.


Structural biology data archiving - where we are and what lies ahead.

  • Gerard J Kleywegt‎ et al.
  • FEBS letters‎
  • 2018‎

For almost 50 years, structural biology has endeavoured to conserve and share its experimental data and their interpretations (usually, atomistic models) through global public archives such as the Protein Data Bank, Electron Microscopy Data Bank and Biological Magnetic Resonance Data Bank (BMRB). These archives are treasure troves of freely accessible data that document our quest for molecular or atomic understanding of biological function and processes in health and disease. They have prepared the field to tackle new archiving challenges as more and more (combinations of) techniques are being utilized to elucidate structure at ever increasing length scales. Furthermore, the field has made substantial efforts to develop validation methods that help users to assess the reliability of structures and to identify the most appropriate data for their needs. In this Review, we present an overview of public data archives in structural biology and discuss the importance of validation for users and producers of structural data. Finally, we sketch our efforts to integrate structural data with bioimaging data and with other sources of biological data. This will make relevant structural information available and more easily discoverable for a wide range of scientists.


Multivariate Analyses of Quality Metrics for Crystal Structures in the PDB Archive.

  • Chenghua Shao‎ et al.
  • Structure (London, England : 1993)‎
  • 2017‎

Following deployment of an augmented validation system by the Worldwide Protein Data Bank (wwPDB) partnership, the quality of crystal structures entering the PDB has improved. Of significance are improvements in quality measures now prominently displayed in the wwPDB validation report. Comparisons of PDB depositions made before and after introduction of the new reporting system show improvements in quality measures relating to pairwise atom-atom clashes, side-chain torsion angle rotamers, and local agreement between the atomic coordinate structure model and experimental electron density data. These improvements are largely independent of resolution limit and sample molecular weight. No significant improvement in the quality of associated ligands was observed. Principal component analysis revealed that structure quality could be summarized with three measures (Rfree, real-space R factor Z score, and a combined molecular geometry quality metric), which can in turn be reduced to a single overall quality metric readily interpretable by all PDB archive users.


Integrative illustration for coronavirus outreach.

  • David S Goodsell‎ et al.
  • PLoS biology‎
  • 2020‎

Two illustrations integrate current knowledge about severe acute respiratory syndrome (SARS) coronaviruses and their life cycle. They have been widely used in education and outreach through free distribution as part of a coronavirus-related resource at Protein Data Bank (PDB)-101, the education portal of the RCSB PDB. Scientific sources for creation of the illustrations and examples of dissemination and response are presented.


Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first 6 months of the COVID-19 pandemic.

  • Joseph H Lubin‎ et al.
  • Proteins‎
  • 2022‎

Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.


PDBe and PDBe-KB: Providing high-quality, up-to-date and integrated resources of macromolecular structures to support basic and applied research and education.

  • Mihaly Varadi‎ et al.
  • Protein science : a publication of the Protein Society‎
  • 2022‎

The archiving and dissemination of protein and nucleic acid structures as well as their structural, functional and biophysical annotations is an essential task that enables the broader scientific community to conduct impactful research in multiple fields of the life sciences. The Protein Data Bank in Europe (PDBe; pdbe.org) team develops and maintains several databases and web services to address this fundamental need. From data archiving as a member of the Worldwide PDB consortium (wwPDB; wwpdb.org), to the PDBe Knowledge Base (PDBe-KB; pdbekb.org), we provide data, data-access mechanisms, and visualizations that facilitate basic and applied research and education across the life sciences. Here, we provide an overview of the structural data and annotations that we integrate and make freely available. We describe the web services and data visualization tools we offer, and provide information on how to effectively use or even further develop them. Finally, we discuss the direction of our data services, and how we aim to tackle new challenges that arise from the recent, unprecedented advances in the field of structure determination and protein structure modeling.


Design and proof of concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain.

  • Daniela I Staquicini‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these "dual-display" phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.


The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies.

  • Vaishali P Waman‎ et al.
  • Briefings in bioinformatics‎
  • 2021‎

SARS-CoV-2 is the causative agent of COVID-19, the ongoing global pandemic. It has posed a worldwide challenge to human health as no effective treatment is currently available to combat the disease. Its severity has led to unprecedented collaborative initiatives for therapeutic solutions against COVID-19. Studies resorting to structure-based drug design for COVID-19 are plethoric and show good promise. Structural biology provides key insights into 3D structures, critical residues/mutations in SARS-CoV-2 proteins, implicated in infectivity, molecular recognition and susceptibility to a broad range of host species. The detailed understanding of viral proteins and their complexes with host receptors and candidate epitope/lead compounds is the key to developing a structure-guided therapeutic design. Since the discovery of SARS-CoV-2, several structures of its proteins have been determined experimentally at an unprecedented speed and deposited in the Protein Data Bank. Further, specialized structural bioinformatics tools and resources have been developed for theoretical models, data on protein dynamics from computer simulations, impact of variants/mutations and molecular therapeutics. Here, we provide an overview of ongoing efforts on developing structural bioinformatics tools and resources for COVID-19 research. We also discuss the impact of these resources and structure-based studies, to understand various aspects of SARS-CoV-2 infection and therapeutic development. These include (i) understanding differences between SARS-CoV-2 and SARS-CoV, leading to increased infectivity of SARS-CoV-2, (ii) deciphering key residues in the SARS-CoV-2 involved in receptor-antibody recognition, (iii) analysis of variants in host proteins that affect host susceptibility to infection and (iv) analyses facilitating structure-based drug and vaccine design against SARS-CoV-2.


Apropos of Universal Epitope Discovery for COVID-19 Vaccines: A Framework for Targeted Phage Display-Based Delivery and Integration of New Evaluation Tools.

  • Christopher Markosian‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2021‎

Targeted bacteriophage (phage) particles are potentially attractive yet inexpensive platforms for immunization. Herein, we describe targeted phage capsid display of an immunogenically relevant epitope of the SARS-CoV-2 Spike protein that is empirically conserved, likely due to the high mutational cost among all variants identified to date. This observation may herald an approach to developing vaccine candidates for broad-spectrum, towards universal, protection against multiple emergent variants of coronavirus that cause COVID-19.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: