Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Modeling the Regulatory Mechanisms by Which NLRX1 Modulates Innate Immune Responses to Helicobacter pylori Infection.

  • Casandra W Philipson‎ et al.
  • PloS one‎
  • 2015‎

Helicobacter pylori colonizes half of the world's population as the dominant member of the gastric microbiota resulting in a lifelong chronic infection. Host responses toward the bacterium can result in asymptomatic, pathogenic or even favorable health outcomes; however, mechanisms underlying the dual role of H. pylori as a commensal versus pathogenic organism are not well characterized. Recent evidence suggests mononuclear phagocytes are largely involved in shaping dominant immunity during infection mediating the balance between host tolerance and succumbing to overt disease. We combined computational modeling, bioinformatics and experimental validation in order to investigate interactions between macrophages and intracellular H. pylori. Global transcriptomic analysis on bone marrow-derived macrophages (BMDM) in a gentamycin protection assay at six time points unveiled the presence of three sequential host response waves: an early transient regulatory gene module followed by sustained and late effector responses. Kinetic behaviors of pattern recognition receptors (PRRs) are linked to differential expression of spatiotemporal response waves and function to induce effector immunity through extracellular and intracellular detection of H. pylori. We report that bacterial interaction with the host intracellular environment caused significant suppression of regulatory NLRC3 and NLRX1 in a pattern inverse to early regulatory responses. To further delineate complex immune responses and pathway crosstalk between effector and regulatory PRRs, we built a computational model calibrated using time-series RNAseq data. Our validated computational hypotheses are that: 1) NLRX1 expression regulates bacterial burden in macrophages; and 2) early host response cytokines down-regulate NLRX1 expression through a negative feedback circuit. This paper applies modeling approaches to characterize the regulatory role of NLRX1 in mechanisms of host tolerance employed by macrophages to respond to and/or to co-exist with intracellular H. pylori.


Effect of TREM-1 blockade and single nucleotide variants in experimental renal injury and kidney transplantation.

  • Alessandra Tammaro‎ et al.
  • Scientific reports‎
  • 2016‎

Renal ischemia reperfusion (IR)-injury induces activation of innate immune response which sustains renal injury and contributes to the development of delayed graft function (DGF). Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory evolutionary conserved pattern recognition receptor expressed on a variety of innate immune cells. TREM-1 expression increases following acute and chronic renal injury. However, the function of TREM-1 in renal IR is still unclear. Here, we investigated expression and function of TREM-1 in a murine model of renal IR using different TREM-1 inhibitors: LP17, LR12 and TREM-1 fusion protein. In a human study, we analyzed the association of non-synonymous single nucleotide variants in the TREM1 gene in a cohort comprising 1263 matching donors and recipients with post-transplant outcomes, including DGF. Our findings demonstrated that, following murine IR, renal TREM-1 expression increased due to the influx of Trem1 mRNA expressing cells detected by in situ hybridization. However, TREM-1 interventions by means of LP17, LR12 and TREM-1 fusion protein did not ameliorate IR-induced injury. In the human renal transplant cohort, donor and recipient TREM1 gene variant p.Thr25Ser was not associated with DGF, nor with biopsy-proven rejection or death-censored graft failure. We conclude that TREM-1 does not play a major role during experimental renal IR and after kidney transplantation.


Role of TREM1-DAP12 in renal inflammation during obstructive nephropathy.

  • Alessandra Tammaro‎ et al.
  • PloS one‎
  • 2013‎

Tubulo-interstitial damage is a common finding in the chronically diseased kidney and is characterized by ongoing inflammation and fibrosis leading to renal dysfunction and end-stage renal disease. Upon kidney injury, endogenous ligands can be released which are recognized by innate immune sensors to alarm innate immune system. A new family of innate sensors is the family of TREM (triggering receptor expressed on myeloid cell). TREM1 is an activating receptor and requires association with transmembrane adapter molecule DAP12 (DNAX-associated protein 12) for cell signaling. TREM1-DAP12 pathway has a cross-talk with intracellular signaling pathways of several Toll-like receptors (TLRs) and is able to amplify TLR signaling and thereby contributes to the magnitude of inflammation. So far, several studies have shown that TLRs play a role in obstructive nephropathy but the contribution of TREM1-DAP12 herein is unknown. Therefore, we studied TREM1 expression in human and murine progressive renal diseases and further investigated the role for TREM1-DAP12 by subjecting wild-type (WT), TREM1/3 double KO and DAP12 KO mice to murine unilateral ureter obstruction (UUO) model. In patients with hydronephrosis, TREM1 positive cells were observed in renal tissue. We showed that in kidneys from WT mice, DAP12 mRNA and TREM1 mRNA and protein levels were elevated upon UUO. Compared to WT mice, DAP12 KO mice displayed less renal MCP-1, KC and TGF-β1 levels and less influx of macrophages during progression of UUO, whereas TREM1/3 double KO mice displayed less renal MCP-1 level. Renal fibrosis was comparable in WT, TREM1/3 double KO and DAP12 KO mice. We conclude that DAP12, partly through TREM1/3, is involved in renal inflammation during progression of UUO.


Peptidoglycan LD-carboxypeptidase Pgp2 influences Campylobacter jejuni helical cell shape and pathogenic properties and provides the substrate for the DL-carboxypeptidase Pgp1.

  • Emilisa Frirdich‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

Despite the importance of Campylobacter jejuni as a pathogen, little is known about the fundamental aspects of its peptidoglycan (PG) structure and factors modulating its helical morphology. A PG dl-carboxypeptidase Pgp1 essential for maintenance of C. jejuni helical shape was recently identified. Bioinformatic analysis revealed the CJJ81176_0915 gene product as co-occurring with Pgp1 in several organisms. Deletion of cjj81176_0915 (renamed pgp2) resulted in straight morphology, representing the second C. jejuni gene affecting cell shape. The PG structure of a Δpgp2 mutant showed an increase in tetrapeptide-containing muropeptides and a complete absence of tripeptides, consistent with ld-carboxypeptidase activity, which was confirmed biochemically. PG analysis of a Δpgp1Δpgp2 double mutant demonstrated that Pgp2 activity is required to generate the tripeptide substrate for Pgp1. Loss of pgp2 affected several pathogenic properties; the deletion strain was defective for motility in semisolid agar, biofilm formation, and fluorescence on calcofluor white. Δpgp2 PG also caused decreased stimulation of the human nucleotide-binding oligomerization domain 1 (Nod1) proinflammatory mediator in comparison with wild type, as expected from the reduction in muropeptide tripeptides (the primary Nod1 agonist) in the mutant; however, these changes did not alter the ability of the Δpgp2 mutant strain to survive within human epithelial cells or to elicit secretion of IL-8 from epithelial cells after infection. The pgp2 mutant also showed significantly reduced fitness in a chick colonization model. Collectively, these analyses enhance our understanding of C. jejuni PG maturation and help to clarify how PG structure and cell shape impact pathogenic attributes.


Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells.

  • Antoaneta Belcheva‎ et al.
  • Cell‎
  • 2014‎

The etiology of colorectal cancer (CRC) has been linked to deficiencies in mismatch repair and adenomatous polyposis coli (APC) proteins, diet, inflammatory processes, and gut microbiota. However, the mechanism through which the microbiota synergizes with these etiologic factors to promote CRC is not clear. We report that altering the microbiota composition reduces CRC in APC(Min/+)MSH2(-/-) mice, and that a diet reduced in carbohydrates phenocopies this effect. Gut microbes did not induce CRC in these mice through an inflammatory response or the production of DNA mutagens but rather by providing carbohydrate-derived metabolites such as butyrate that fuel hyperproliferation of MSH2(-/-) colon epithelial cells. Further, we provide evidence that the mismatch repair pathway has a role in regulating β-catenin activity and modulating the differentiation of transit-amplifying cells in the colon. These data thereby provide an explanation for the interaction between microbiota, diet, and mismatch repair deficiency in CRC induction. PAPERCLIP:


WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1.

  • Hannah C Dooley‎ et al.
  • Molecular cell‎
  • 2014‎

Mammalian cell homeostasis during starvation depends on initiation of autophagy by endoplasmic reticulum-localized phosphatidylinositol 3-phosphate (PtdIns(3)P) synthesis. Formation of double-membrane autophagosomes that engulf cytosolic components requires the LC3-conjugating Atg12-5-16L1 complex. The molecular mechanisms of Atg12-5-16L1 recruitment and significance of PtdIns(3)P synthesis at autophagosome formation sites are unknown. By identifying interacting partners of WIPIs, WD-repeat PtdIns(3)P effector proteins, we found that Atg16L1 directly binds WIPI2b. Mutation experiments and ectopic localization of WIPI2b to plasma membrane show that WIPI2b is a PtdIns(3)P effector upstream of Atg16L1 and is required for LC3 conjugation and starvation-induced autophagy through recruitment of the Atg12-5-16L1 complex. Atg16L1 mutants, which do not bind WIPI2b but bind FIP200, cannot rescue starvation-induced autophagy in Atg16L1-deficient MEFs. WIPI2b is also required for autophagic clearance of pathogenic bacteria. WIPI2b binds the membrane surrounding Salmonella and recruits the Atg12-5-16L1 complex, initiating LC3 conjugation, autophagosomal membrane formation, and engulfment of Salmonella.


Phenotyping of Nod1/2 double deficient mice and characterization of Nod1/2 in systemic inflammation and associated renal disease.

  • Ingrid Stroo‎ et al.
  • Biology open‎
  • 2012‎

It is indispensable to thoroughly characterize each animal model in order to distinguish between primary and secondary effects of genetic changes. The present study analyzed Nod1 and Nod2 double deficient (Nod1/2 DKO) mice under physiological and inflammatory conditions. Nod1 and Nod2 are members of the Nucleotide-binding domain and Leucine-rich repeat containing Receptor (NLR) family. Several inflammatory disorders, such as Crohn's disease and asthma, are linked to genetic changes in either Nod1 or Nod2. These associations suggest that Nod1 and Nod2 play important roles in regulating the immune system.Three-month-old wildtype (Wt) and Nod1/2 DKO mice were sacrificed, body and organ weight were determined, and blood was drawn. Except for lower liver weight in Nod1/2 DKO mice, no differences were found in body/organ weight between both strains. Leukocyte count and composition was comparable. No significant changes in analyzed plasma biochemical markers were found. Additionally, intestinal and vascular permeability was determined. Nod1/2 DKO mice show increased susceptibility for intestinal permeability while vascular permeability was not affected. Next we induced septic shock and organ damage by administering LPS+PGN intraperitoneally to Wt and Nod1/2 DKO mice and sacrificed animals after 2 and 24 hours. The systemic inflammatory and metabolic response was comparable between both strains. However, renal response was different as indicated by partly preserved kidney function and tubular epithelial cell damage in Nod1/2 DKO at 24 hours. Remarkably, renal inflammatory mediators Tnfα, KC and Il-10 were significantly increased in Nod1/2 DKO compared with Wt mice at 2 hours.Systematic analysis of Nod1/2 DKO mice revealed a possible role of Nod1/2 in the development of renal disease during systemic inflammation.


T cell intrinsic NOD2 is dispensable for CD8 T cell immunity.

  • Gloria H Y Lin‎ et al.
  • PloS one‎
  • 2013‎

NOD2 is an intracellular pattern recognition receptor that provides innate sensing of bacterial muramyl dipeptide by host cells, such as dendritic cells, macrophages and epithelial cells. While NOD2's role as an innate pathogen sensor is well established, NOD2 is also expressed at low levels in T cells and there are conflicting data as to whether NOD2 plays an intrinsic role in T cell function. Here we show that following adoptive transfer into WT hosts, NOD2(-/-) OT-I T cells show a small decrease in the number of OVA-specific CD8 T cells recovered at the peak of the response to respiratory influenza virus infection. On the other hand, no such defect was observed upon intranasal immunization with a replication defective adenovirus carrying the OVA epitope recognized by OT-I, or when OVA was delivered with LPS subcutaneously, or when influenza-OVA was delivered intraperitoneally. Thus we observed a selective defect in NOD2-deficient T cell responses only during a live viral infection. Moreover, there was no apparent defect when NOD2(-/-) OT-I T cells were stimulated in vitro. Finally, this selective defect in recovery of NOD2-deficient CD8 T cells was not observed in a non-transgenic respiratory infection model in which mixed bone marrow chimeras were used such that the NOD2(-/-) T cells were allowed to develop and respond in a NOD2-sufficient host. Taken together our data indicate that T cell intrinsic NOD2 is not required for CD8 T cell responses to antigen delivered under a variety of conditions in vitro and in vivo. However, CD8 T cells that have developed in the absence of NOD2 show a selective and modest impairment in their response to live respiratory influenza infection.


Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program.

  • Ivan Tattoli‎ et al.
  • Cell host & microbe‎
  • 2012‎

Autophagy, which targets cellular constituents for degradation, is normally inhibited in metabolically replete cells by the metabolic checkpoint kinase mTOR. Although autophagic degradation of invasive bacteria has emerged as a critical host defense mechanism, the signals that induce autophagy upon bacterial infection remain unclear. We find that infection of epithelial cells with Shigella and Salmonella triggers acute intracellular amino acid (AA) starvation due to host membrane damage. Pathogen-induced AA starvation caused downregulation of mTOR activity, resulting in the induction of autophagy. In Salmonella-infected cells, membrane integrity and cytosolic AA levels rapidly normalized, favoring mTOR reactivation at the surface of the Salmonella-containing vacuole and bacterial escape from autophagy. In addition, bacteria-induced AA starvation activated the GCN2 kinase, eukaryotic initiation factor 2α, and the transcription factor ATF3-dependent integrated stress response and transcriptional reprogramming. Thus, AA starvation induced by bacterial pathogens is sensed by the host to trigger protective innate immune and stress responses.


S100A8/A9 is not involved in host defense against murine urinary tract infection.

  • Mark C Dessing‎ et al.
  • PloS one‎
  • 2010‎

Inflammation is commonly followed by the release of endogenous proteins called danger associated molecular patterns (DAMPs) that are able to warn the host for eminent danger. S100A8/A9 subunits are DAMPs that belong to the S100 family of calcium binding proteins. S100A8/A9 complexes induce an inflammatory response and their expression correlates with disease severity in several inflammatory disorders. S100A8/A9 promote endotoxin- and Escherichia (E.) coli-induced sepsis showing its contribution in systemic infection. The role of S100A8/A9 during a local infection of the urinary tract system caused by E. coli remains unknown.


NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis.

  • Gerben Ferwerda‎ et al.
  • PLoS pathogens‎
  • 2005‎

Infection with Mycobacterium tuberculosis is one of the leading causes of death worldwide. Recognition of M. tuberculosis by pattern recognition receptors is crucial for activation of both innate and adaptive immune responses. In the present study, we demonstrate that nucleotide-binding oligomerization domain 2 (NOD2) and Toll-like receptors (TLRs) are two nonredundant recognition mechanisms of M. tuberculosis. CHO cell lines transfected with human TLR2 or TLR4 were responsive to M. tuberculosis. TLR2 knock-out mice displayed more than 50% defective cytokine production after stimulation with mycobacteria, whereas TLR4-defective mice also released 30% less cytokines compared to controls. Similarly, HEK293T cells transfected with NOD2 responded to stimulation with M. tuberculosis. The important role of NOD2 for the recognition of M. tuberculosis was demonstrated in mononuclear cells of individuals homozygous for the 3020insC NOD2 mutation, who showed an 80% defective cytokine response after stimulation with M. tuberculosis. Finally, the mycobacterial TLR2 ligand 19-kDa lipoprotein and the NOD2 ligand muramyl dipeptide synergized for the induction of cytokines, and this synergism was lost in cells defective in either TLR2 or NOD2. Together, these results demonstrate that NOD2 and TLR pathways are nonredundant recognition mechanisms of M. tuberculosis that synergize for the induction of proinflammatory cytokines.


Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells.

  • Leticia A M Carneiro‎ et al.
  • Cell host & microbe‎
  • 2009‎

Shigella rapidly kills myeloid cells via a caspase-1 inflammasome-dependent cell death mechanism. However, despite a critical role for nonmyeloid cells in the physiopathology of Shigella infection, the mechanism by which Shigella kills nonmyeloid cells remains uncharacterized. Here we demonstrate that, in nonmyeloid cells, Shigella infection induces loss of mitochondrial inner membrane potential, mitochondrial damage, and necrotic cell death through a pathway dependent on Bnip3 and cyclophilin D, two molecules implicated in the host oxidative stress responses. This mitochondrial cell death mechanism was potently counterbalanced by a Nod1-dependent Rip2/IKKbeta/NF-kappaB signaling pathway activated by the pathogen in the first hours of infection. Our results suggest that in nonmyeloid cells, oxidative stress pathways and signaling triggered by an intracellular bacterial pathogen are tightly linked and demonstrate the existence of specific Shigella-induced prodeath and prosurvival pathways converging at the mitochondria to control a necrotic cell death program.


Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury.

  • Wilco P Pulskens‎ et al.
  • PloS one‎
  • 2008‎

Toll-like receptors (TLRs) can detect endogenous danger molecules released upon tissue injury resulting in the induction of a proinflammatory response. One of the TLR family members, TLR4, is constitutively expressed at RNA level on renal epithelium and this expression is enhanced upon renal ischemia/reperfusion (I/R) injury. The functional relevance of this organ-specific upregulation remains however unknown. We therefore investigated the specific role of TLR4 and the relative contribution of its two downstream signaling cascades, the MyD88-dependent and TRIF-dependent cascades in renal damage by using TLR4-/-, MyD88-/- and TRIF-mutant mice that were subjected to renal ischemia/reperfusion injury. Our results show that TLR4 initiates an exaggerated proinflammatory response upon I/R injury, as reflected by lower levels of chemokines and infiltrating granulocytes, less renal damage and a more preserved renal function in TLR4-/- mice as compared to wild type mice. In vitro studies demonstrate that renal tubular epithelial cells can coordinate an immune response to ischemic injury in a TLR4-dependent manner. In vivo we found that epithelial- and leukocyte-associated functional TLR4 contribute in a similar proportion to renal dysfunction and injury as assessed by bone marrow chimeric mice. Surprisingly, no significant differences were found in renal function and inflammation in MyD88-/- and TRIF-mutant mice compared with their wild types, suggesting that selective targeting of TLR4 directly may be more effective for the development of therapeutic tools to prevent I/R injury than targeting the intracellular pathways used by TLR4. In conclusion, we identified TLR4 as a cellular sentinel for acute renal damage that subsequently controls the induction of an innate immune response.


Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity.

  • Jörg H Fritz‎ et al.
  • Immunity‎
  • 2007‎

Recent evidence has suggested that signals other than those from Toll-like receptors (TLRs) could contribute to the elicitation of antigen-specific immunity. Therefore, we examined the role of the Nod-like receptor (NLR) family member, Nod1, in the generation of adaptive immune responses. Our findings show that innate immune sensing of peptidoglycan by Nod1 is key for priming antigen-specific T cell immunity and subsequent antibody responses in vivo. Nod1 stimulation alone was sufficient to drive antigen-specific immunity with a predominant Th2 polarization profile. In conjunction with TLR stimulation, however, Nod1 triggering was required to instruct the onset of Th1 and Th2 as well as Th17 immune pathways. Cells outside of the hematopoietic lineage provided the early signals necessary to orchestrate the development of Nod1-dependent immune responses. These findings highlight Nod1 as a key innate immune trigger in the local tissue microenvironment that drives the development of adaptive immunity.


Male Mice Lacking NLRX1 Are Partially Protected From High-Fat Diet-Induced Hyperglycemia.

  • Sheila R Costford‎ et al.
  • Journal of the Endocrine Society‎
  • 2018‎

Nod-like receptor (NLR)X1 is an NLR family protein that localizes to the mitochondrial matrix and modulates reactive oxygen species production, possibly by directly interacting with the electron transport chain. Recent work demonstrated that cells lacking NLRX1 have higher oxygen consumption but lower levels of adenosine triphosphate, suggesting that NLRX1 might prevent uncoupling of oxidative phosphorylation. We therefore hypothesized that NLRX1 might regulate whole-body energy metabolism through its effect on mitochondria. Male NLRX1 whole-body knockout (KO) mice and wild-type (WT) C57BL/6N controls were fed a low-fat or a high-fat (HF) diet for 16 weeks from weaning. Contrary to this hypothesis, there were no differences in body weight, adiposity, energy intake, or energy expenditure between HF-fed KO and WT mice, but instead HF KO mice were partially protected from the development of diet-induced hyperglycemia. Additionally, HF KO mice did not present with hyperinsulinemia during the glucose tolerance test, as did HF WT mice. There were no genotype differences in insulin tolerance, which led us to consider a pancreatic phenotype. Histology revealed that KO mice were protected from HF-induced pancreatic lipid accumulation, suggesting a potential role for NLRX1 in pancreatic dysfunction during the development diet-induced type 2 diabetes mellitus. Hence, NLRX1 depletion partially protects against postabsorptive hyperglycemia in obesity that may be linked to the prevention of pancreatic lipid accumulation. Although the actual mechanisms restoring glucose and insulin dynamics remain unknown, NLRX1 emerges as a potentially interesting target to inhibit for the prevention of type 2 diabetes mellitus.


Circulating NOD1 Activators and Hematopoietic NOD1 Contribute to Metabolic Inflammation and Insulin Resistance.

  • Kenny L Chan‎ et al.
  • Cell reports‎
  • 2017‎

Insulin resistance is a chronic inflammatory condition accompanying obesity or high fat diets that leads to type 2 diabetes. It is hypothesized that lipids and gut bacterial compounds in particular contribute to metabolic inflammation by activating the immune system; however, the receptors detecting these "instigators" of inflammation remain largely undefined. Here, we show that circulating activators of NOD1, a receptor for bacterial peptidoglycan, increase with high fat feeding in mice, suggesting that NOD1 could be a critical sensor leading to metabolic inflammation. Hematopoietic depletion of NOD1 did not prevent weight gain but protected chimeric mice against diet-induced glucose and insulin intolerance. Mechanistically, while macrophage infiltration of adipose tissue persisted, notably these cells were less pro-inflammatory, had lower CXCL1 production, and consequently, lower neutrophil chemoattraction into the tissue. These findings reveal macrophage NOD1 as a cell-specific target to combat diet-induced inflammation past the step of macrophage infiltration, leading to insulin resistance.


Nod1 promotes colorectal carcinogenesis by regulating the immunosuppressive functions of tumor-infiltrating myeloid cells.

  • Charles Maisonneuve‎ et al.
  • Cell reports‎
  • 2021‎

Pioneering studies from the early 1980s suggested that bacterial peptidoglycan-derived muramyl peptides (MPs) could exert either stimulatory or immunosuppressive functions depending, in part, on chronicity of exposure. However, this Janus-faced property of MPs remains largely unexplored. Here, we demonstrate the immunosuppressive potential of Nod1, the bacterial sensor of diaminopimelic acid (DAP)-containing MPs. Using a model of self-limiting peritonitis, we show that systemic Nod1 activation promotes an autophagy-dependent reprogramming of macrophages toward an alternative phenotype. Moreover, Nod1 stimulation induces the expansion of myeloid-derived suppressor cells (MDSCs) and maintains their immunosuppressive potential via arginase-1 activity. Supporting the role of MDSCs and tumor-associated macrophages in cancer, we demonstrate that myeloid-intrinsic Nod1 expression sustains intra-tumoral arginase-1 levels to foster an immunosuppressive and tumor-permissive microenvironment during colorectal cancer (CRC) development. Our findings support the notion that bacterial products, via Nod1 detection, modulate the immunosuppressive activity of myeloid cells and fuel tumor progression in CRC.


The eIF2α kinase HRI triggers the autophagic clearance of cytosolic protein aggregates.

  • Tapas Mukherjee‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Large cytosolic protein aggregates are removed by two main cellular processes, autophagy and the ubiquitin-proteasome system, and defective clearance of these protein aggregates results in proteotoxicity and cell death. Recently, we found that the eIF2α kinase heme-regulated inhibitory (HRI) induced a cytosolic unfolded protein response to prevent aggregation of innate immune signalosomes, but whether HRI acts as a general sensor of proteotoxicity in the cytosol remains unclear. Here we show that HRI controls autophagy to clear cytosolic protein aggregates when the ubiquitin-proteasome system is inhibited. We further report that silencing the expression of HRI resulted in decreased levels of BAG3 and HSPB8, two proteins involved in chaperone-assisted selective autophagy, suggesting that HRI may control proteostasis in the cytosol at least in part through chaperone-assisted selective autophagy. Moreover, knocking down the expression of HRI resulted in cytotoxic accumulation of overexpressed α-synuclein, a protein known to aggregate in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In agreement with these data, protein aggregate accumulation and microglia activation were observed in the spinal cord white matter of 7-month-old Hri-/- mice as compared with Hri+/+ littermates. Moreover, aged Hri-/- mice showed accumulation of misfolded α-synuclein in the lateral collateral pathway, a region of the sacral spinal cord horn that receives visceral sensory afferents from the bladder and distal colon, a pathological feature common to α-synucleinopathies in humans. Together, these results suggest that HRI contributes to a general cytosolic unfolded protein response that could be leveraged to bolster the clearance of cytotoxic protein aggregates.


The Campylobacter jejuni helical to coccoid transition involves changes to peptidoglycan and the ability to elicit an immune response.

  • Emilisa Frirdich‎ et al.
  • Molecular microbiology‎
  • 2019‎

Campylobacter jejuni is a prevalent enteric pathogen that changes morphology from helical to coccoid under unfavorable conditions. Bacterial peptidoglycan maintains cell shape. As C. jejuni transformed from helical to coccoid, peptidoglycan dipeptides increased and tri- and tetrapeptides decreased. The DL-carboxypeptidase Pgp1 important for C. jejuni helical morphology and putative N-acetylmuramoyl-L-alanyl amidase AmiA were both involved in the coccoid transition. Mutants in pgp1 and amiA showed reduced coccoid formation, with ∆pgp1∆amiA producing minimal coccoids. Both ∆amiA and ∆amiA∆pgp1 lacked flagella and formed unseparated chains of cells consistent with a role for AmiA in cell separation. All strains accumulated peptidoglycan dipeptides over time, but only strains capable of becoming coccoid displayed tripeptide changes. C. jejuni helical shape and corresponding peptidoglycan structure are important for pathogenesis-related attributes. Concomitantly, changing to a coccoid morphology resulted in differences in pathogenic properties; coccoid C. jejuni were non-motile and non-infectious, with minimal adherence and invasion of epithelial cells and an inability to stimulate IL-8. Coccoid peptidoglycan exhibited reduced activation of innate immune receptors Nod1 and Nod2 versus helical peptidoglycan. C. jejuni also transitioned to coccoid within epithelial cells, so the inability of the immune system to detect coccoid C. jejuni may be significant in its pathogenesis.


TREM1/3 Deficiency Impairs Tissue Repair After Acute Kidney Injury and Mitochondrial Metabolic Flexibility in Tubular Epithelial Cells.

  • Alessandra Tammaro‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Long-term sequelae of acute kidney injury (AKI) are associated with incomplete recovery of renal function and the development of chronic kidney disease (CKD), which can be mediated by aberrant innate immune activation, mitochondrial pathology, and accumulation of senescent tubular epithelial cells (TECs). Herein, we show that the innate immune receptor Triggering receptor expressed on myeloid cells-1 (TREM-1) links mitochondrial metabolism to tubular epithelial senescence. TREM-1 is expressed by inflammatory and epithelial cells, both players in renal repair after ischemia/reperfusion (IR)-induced AKI. Hence, we subjected WT and TREM1/3 KO mice to different models of renal IR. TREM1/3 KO mice displayed no major differences during the acute phase of injury, but increased mortality was observed in the recovery phase. This detrimental effect was associated with maladaptive repair, characterized by persistent tubular damage, inflammation, fibrosis, and TEC senescence. In vitro, we observed an altered mitochondrial homeostasis and cellular metabolism in TREM1/3 KO primary TECs. This was associated with G2/M arrest and increased ROS accumulation. Further exposure of cells to ROS-generating triggers drove the cells into a stress-induced senescent state, resulting in decreased wound healing capacity. Treatment with a mitochondria anti-oxidant partly prevented the senescent phenotype, suggesting a role for mitochondria herein. In summary, we have unraveled a novel (metabolic) mechanism by which TREM1/3 deficiency drives senescence in TECs. This involves redox imbalance, mitochondrial dysfunction and a decline in cellular metabolic activities. These finding suggest a novel role for TREM-1 in maintaining tubular homeostasis through regulation of mitochondrial metabolic flexibility.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: