Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Quantitative proteomics of synaptosome S-nitrosylation in Alzheimer's disease.

  • Teodora Stella Wijasa‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

Increasing evidence suggests that both synaptic loss and neuroinflammation constitute early pathologic hallmarks of Alzheimer's disease. A downstream event during inflammatory activation of microglia and astrocytes is the induction of nitric oxide synthase type 2, resulting in an increased release of nitric oxide and the post-translational S-nitrosylation of protein cysteine residues. Both early events, inflammation and synaptic dysfunction, could be connected if this excess nitrosylation occurs on synaptic proteins. In the long term, such changes could provide new insight into patho-mechanisms as well as biomarker candidates from the early stages of disease progression. This study investigated S-nitrosylation in synaptosomal proteins isolated from APP/PS1 model mice in comparison to wild type and NOS2-/- mice, as well as human control, mild cognitive impairment and Alzheimer's disease brain tissues. Proteomics data were obtained using an established protocol utilizing an isobaric mass tag method, followed by nanocapillary high performance liquid chromatography tandem mass spectrometry. Statistical analysis identified the S-nitrosylation sites most likely derived from an increase in nitric oxide (NO) in dependence of presence of AD pathology, age and the key enzyme NOS2. The resulting list of candidate proteins is discussed considering function, previous findings in the context of neurodegeneration, and the potential for further validation studies.


Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes.

  • Hannah Scheiblich‎ et al.
  • Cell‎
  • 2021‎

Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of inflammatory pathways. Here, we studied how microglia handle and cope with α-synuclein (α-syn) fibrils and their clearance. We found that microglia exposed to α-syn establish a cellular network through the formation of F-actin-dependent intercellular connections, which transfer α-syn from overloaded microglia to neighboring naive microglia where the α-syn cargo got rapidly and effectively degraded. Lowering the α-syn burden attenuated the inflammatory profile of microglia and improved their survival. This degradation strategy was compromised in cells carrying the LRRK2 G2019S mutation. We confirmed the intercellular transfer of α-syn assemblies in microglia using organotypic slice cultures, 2-photon microscopy, and neuropathology of patients. Together, these data identify a mechanism by which microglia create an "on-demand" functional network in order to improve pathogenic α-syn clearance.


Phylogeography and resistome of pneumococcal meningitis in West Africa before and after vaccine introduction.

  • Madikay Senghore‎ et al.
  • Microbial genomics‎
  • 2021‎

Despite contributing to the large disease burden in West Africa, little is known about the genomic epidemiology of Streptococcus pneumoniae which cause meningitis among children under 5 years old in the region. We analysed whole-genome sequencing data from 185 S. pneumoniae isolates recovered from suspected paediatric meningitis cases as part of the World Health Organization (WHO) invasive bacterial diseases surveillance from 2010 to 2016. The phylogeny was reconstructed, accessory genome similarity was computed and antimicrobial-resistance patterns were inferred from the genome data and compared to phenotypic resistance from disc diffusion. We studied the changes in the distribution of serotypes pre- and post-pneumococcal conjugate vaccine (PCV) introduction in the Central and Western sub-regions separately. The overall distribution of non-vaccine, PCV7 (4, 6B, 9V, 14, 18C, 19F and 23F) and additional PCV13 serotypes (1, 3, 5, 6A, 19A and 7F) did not change significantly before and after PCV introduction in the Central region (Fisher's test P value 0.27) despite an increase in the proportion of non-vaccine serotypes to 40 % (n=6) in the post-PCV introduction period compared to 21.9 % (n=14). In the Western sub-region, PCV13 serotypes were more dominant among isolates from The Gambia following the introduction of PCV7, 81 % (n=17), compared to the pre-PCV period in neighbouring Senegal, 51 % (n=27). The phylogeny illustrated the diversity of strains associated with paediatric meningitis in West Africa and highlighted the existence of phylogeographical clustering, with isolates from the same sub-region clustering and sharing similar accessory genome content. Antibiotic-resistance genotypes known to confer resistance to penicillin, chloramphenicol, co-trimoxazole and tetracycline were detected across all sub-regions. However, there was no discernible trend linking the presence of resistance genotypes with the vaccine introduction period or whether the strain was a vaccine or non-vaccine serotype. Resistance genotypes appeared to be conserved within selected sub-clades of the phylogenetic tree, suggesting clonal inheritance. Our data underscore the need for continued surveillance on the emergence of non-vaccine serotypes as well as chloramphenicol and penicillin resistance, as these antibiotics are likely still being used for empirical treatment in low-resource settings. This article contains data hosted by Microreact.


Microglial PD-1 stimulation by astrocytic PD-L1 suppresses neuroinflammation and Alzheimer's disease pathology.

  • Markus P Kummer‎ et al.
  • The EMBO journal‎
  • 2021‎

Chronic neuroinflammation is a pathogenic component of Alzheimer's disease (AD) that may limit the ability of the brain to clear amyloid deposits and cellular debris. Tight control of the immune system is therefore key to sustain the ability of the brain to repair itself during homeostasis and disease. The immune-cell checkpoint receptor/ligand pair PD-1/PD-L1, known for their inhibitory immune function, is expressed also in the brain. Here, we report upregulated expression of PD-L1 and PD-1 in astrocytes and microglia, respectively, surrounding amyloid plaques in AD patients and in the APP/PS1 AD mouse model. We observed juxtamembrane shedding of PD-L1 from astrocytes, which may mediate ectodomain signaling to PD-1-expressing microglia. Deletion of microglial PD-1 evoked an inflammatory response and compromised amyloid-β peptide (Aβ) uptake. APP/PS1 mice deficient for PD-1 exhibited increased deposition of Aβ, reduced microglial Aβ uptake, and decreased expression of the Aβ receptor CD36 on microglia. Therefore, ineffective immune regulation by the PD-1/PD-L1 axis contributes to Aβ plaque deposition during chronic neuroinflammation in AD.


PAX8 lineage-driven T cell engaging antibody for the treatment of high-grade serous ovarian cancer.

  • Emily Lee‎ et al.
  • Scientific reports‎
  • 2021‎

High-grade serous ovarian cancers (HGSOC) represent the most common subtype of ovarian malignancies. Due to the frequency of late-stage diagnosis and high rates of recurrence following standard of care treatments, novel therapies are needed to promote durable responses. We investigated the anti-tumor activity of CD3 T cell engaging bispecific antibodies (TCBs) directed against the PAX8 lineage-driven HGSOC tumor antigen LYPD1 and demonstrated that anti-LYPD1 TCBs induce T cell activation and promote in vivo tumor growth inhibition in LYPD1-expressing HGSOC. To selectively target LYPD1-expressing tumor cells with high expression while sparing cells with low expression, we coupled bivalent low-affinity anti-LYPD1 antigen-binding fragments (Fabs) with the anti-CD3 scFv. In contrast to the monovalent anti-LYPD1 high-affinity TCB (VHP354), the bivalent low-affinity anti-LYPD1 TCB (QZC131) demonstrated antigen density-dependent selectivity and showed tolerability in cynomolgus monkeys at the maximum dose tested of 3 mg/kg. Collectively, these data demonstrate that bivalent TCBs directed against LYPD1 have compelling efficacy and safety profiles to support its use as a treatment for high-grade serous ovarian cancers.


Pan-PPAR modulation effectively protects APP/PS1 mice from amyloid deposition and cognitive deficits.

  • Markus P Kummer‎ et al.
  • Molecular neurobiology‎
  • 2015‎

Alzheimer's disease (AD) is a neurodegenerative condition that leads to neuronal death and memory dysfunction. In the past, specific peroxisome proliferator-activated receptor (PPAR)γ-agonists, such as pioglitazone, have been tested with limited success to improve AD pathology. Here, we investigated the therapeutic efficacy of GFT1803, a novel potent PPAR agonist that activates all the three PPAR isoforms (α/δ/γ) in the APP/PS1 mouse model in comparison to the selective PPARγ-agonist pioglitazone. Both compounds showed similar brain/plasma partitioning ratios, although whole body and brain exposure to GFT1803 was significantly lower as compared to pioglitazone, at doses used in this study. Oral treatment of APP/PS1 mice with GFT1803 decreased microglial activation, amyloid β (Aβ) plaque area, Aβ levels in sodium dodecyl sulfate- and formic acid-soluble fractions in a concentration-dependent manner. With a single exception of Aβ38 and Aβ40 levels, measured by ELISA, these effects were not observed in mice treated with pioglitazone. Both ligands decreased glial fibrillary acidic protein (GFAP) expression to similar extent and did not affect ApoE expression. Finally, GFT1803 increased insulin-degrading enzyme expression. Analysis of spatial memory formation in the Morris water maze demonstrated that both compounds were able to partially revert the phenotype of APP/PS1 mice in comparison to wild-type mice with GFT1803 being most effective. As compared to pioglitazone, GFT1803 (pan-PPAR agonist) produced both quantitatively superior and qualitatively different therapeutic effects with respect to amyloid plaque burden, insoluble Aβ content, and neuroinflammation at significantly lower whole body and brain exposure rates.


Early Changes in Skeletal Muscle of Young C22 Mice, A Model of Charcot-Marie-Tooth 1A.

  • Friederike Deres‎ et al.
  • Journal of neuromuscular diseases‎
  • 2021‎

The C22 mouse is a Charcot-Marie-Tooth 1A transgenic model with minimal axonal loss.


Systemic inflammation induced the delayed reduction of excitatory synapses in the CA3 during ageing.

  • Tatsuya Manabe‎ et al.
  • Journal of neurochemistry‎
  • 2021‎

Sepsis-associated encephalopathy (SAE) represents diverse cerebral dysfunctions in response to pathogen-induced systemic inflammation. Peripheral exposure to lipopolysaccharide (LPS), a component of the gram-negative bacterial cell wall, has been extensively used to model systemic inflammation. Our previous studies suggested that LPS led to hippocampal neuron death and synaptic destruction in vivo. However, the underlying roles of activated microglia in these neuronal changes remained unclear. Here, LPS from two different bacterial strains (Salmonella enterica or E. coli) were compared and injected in 14- to 16-month-old mice and evaluated for neuroinflammation and neuronal integrity in the hippocampus at 7 or 63 days post-injection (dpi). LPS injection resulted in persistent neuroinflammation lasting for seven days and a subsequent normalisation by 63 dpi. Of note, increases in proinflammatory cytokines, microglial morphology and microglial mean lysosome volume were more pronounced after E. coli LPS injection than Salmonella LPS at 7 dpi. While inhibitory synaptic puncta density remained normal, excitatory synaptic puncta were locally reduced in the CA3 region of the hippocampus at 63 dpi. Finally, we provide evidence that excitatory synapses coated with complement factor 3 (C3) decreased between 7 dpi and 63 dpi. Although we did not find an increase of synaptic pruning by microglia, it is plausible that microglia recognised and eliminated these C3-tagged synapses between the two time points of investigation. Since a region-specific decline of CA3 synapses has previously been reported during normal ageing, we postulate that systemic inflammation may have accelerated or worsened the CA3 synaptic changes in the ageing brain.


TGFβ-blockade uncovers stromal plasticity in tumors by revealing the existence of a subset of interferon-licensed fibroblasts.

  • Angelo L Grauel‎ et al.
  • Nature communications‎
  • 2020‎

Despite the increasing interest in targeting stromal elements of the tumor microenvironment, we still face tremendous challenges in developing adequate therapeutics to modify the tumor stromal landscape. A major obstacle to this is our poor understanding of the phenotypic and functional heterogeneity of stromal cells in tumors. Herein, we perform an unbiased interrogation of tumor mesenchymal cells, delineating the co-existence of distinct subsets of cancer-associated fibroblasts (CAFs) in the microenvironment of murine carcinomas, each endowed with unique phenotypic features and functions. Furthermore, our study shows that neutralization of TGFβ in vivo leads to remodeling of CAF dynamics, greatly reducing the frequency and activity of the myofibroblast subset, while promoting the formation of a fibroblast population characterized by strong response to interferon and heightened immunomodulatory properties. These changes correlate with the development of productive anti-tumor immunity and greater efficacy of PD1 immunotherapy. Along with providing the scientific rationale for the evaluation of TGFβ and PD1 co-blockade in the clinical setting, this study also supports the concept of plasticity of the stromal cell landscape in tumors, laying the foundation for future investigations aimed at defining pathways and molecules to program CAF composition for cancer therapy.


Characterizing microglial senescence: Tau as a key player.

  • Deniz Karabag‎ et al.
  • Journal of neurochemistry‎
  • 2023‎

The highest risk factor for the development of neurodegenerative diseases like tauopathies is aging. Many physiological decrements underlying aging are linked to cellular senescence. Senescent cells are characterized by an irreversible growth arrest and formation of a senescence-associated secretory phenotype (SASP), a proinflammatory secretome that modifies the cellular microenvironment and contributes to tissue deterioration. Microglia, the innate immune cells in the brain, can enter a senescent state during aging. In addition, senescent microglia have been identified in the brains of tau-transgenic mice and patients suffering from tauopathies. While the contribution of senescent microglia to the development of tauopathies and other neurodegenerative diseases is a growing area of research, the effect of tau on microglial senescence remains elusive. Here, we exposed primary microglia to 5 and 15 nanomolar (nM) of monomeric tau for 18 h, followed by a recovery period of 48 h. Using multiple senescence markers, we found that exposure to 15 nM, but not 5 nM of tau increased levels of cell cycle arrest and a DNA damage marker, induced loss of the nuclear envelope protein lamin B1 and the histone marker H3K9me3, impaired tau clearance and migration, altered the cell morphology and resulted in formation of a SASP. Taken together, we show that exposure to tau can lead to microglial senescence. As senescent cells were shown to negatively impact tau pathologies, this suggests the presence of a vicious circle, which should be further investigated in the future.


Specific, sensitive, and quantitative enzyme-linked immunosorbent assay for human immunoglobulin G antibodies to anthrax toxin protective antigen.

  • Conrad P Quinn‎ et al.
  • Emerging infectious diseases‎
  • 2002‎

The bioterrorism-associated human anthrax epidemic in the fall of 2001 highlighted the need for a sensitive, reproducible, and specific laboratory test for the confirmatory diagnosis of human anthrax. The Centers for Disease Control and Prevention developed, optimized, and rapidly qualified an enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G (IgG) antibodies to Bacillus anthracis protective antigen (PA) in human serum. The qualified ELISA had a minimum detection limit of 0.06 micro g/mL, a reliable lower limit of detection of 0.09 micro g/mL, and a lower limit of quantification in undiluted serum specimens of 3.0 micro g/mL anti-PA IgG. The diagnostic sensitivity of the assay was 97.8%, and the diagnostic specificity was 97.6%. A competitive inhibition anti-PA IgG ELISA was also developed to enhance diagnostic specificity to 100%. The anti-PA ELISAs proved valuable for the confirmation of cases of cutaneous and inhalational anthrax and evaluation of patients in whom the diagnosis of anthrax was being considered.


Soluble Aβ oligomers and protofibrils induce NLRP3 inflammasome activation in microglia.

  • Asta Lučiūnaitė‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder causing memory loss, language problems and behavioural disturbances. AD is associated with the accumulation of fibrillar amyloid-β (Aβ) and the formation of neurofibrillary tau tangles. Fibrillar Aβ itself represents a danger-associated molecular pattern, which is recognized by specific microglial receptors. One of the key players is formation of the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome, whose activation has been demonstrated in AD patient brains and transgenic animal models of AD. Here, we investigated whether Aβ oligomers or protofibrils that represent lower molecular aggregates prior to Aβ deposition are able to activate the NLRP3 inflammasome and subsequent interleukin-1 beta (IL-1β) release by microglia. In our study, we used Aβ preparations of different sizes: small oligomers and protofibrils of which the structure was confirmed by atomic force microscopy. Primary microglial cells from C57BL/6 mice were treated with the respective Aβ preparations and NLRP3 inflammasome activation, represented by caspase-1 cleavage, IL-1β production, and apoptosis-associated speck-like protein containing a CARD speck formation was analysed. Both protofibrils and low molecular weight Aβ aggregates induced a significant increase in IL-1β release. Inflammasome activation was confirmed by apoptosis-associated speck-like protein containing a CARD speck formation and detection of active caspase-1. The NLRP3 inflammasome inhibitor MCC950 completely inhibited the Aβ-induced immune response. Our results show that the NLRP3 inflammasome is activated not only by fibrillar Aβ aggregates as reported before, but also by lower molecular weight Aβ oligomers and protofibrils, highlighting the possibility that microglial activation by these Aβ species may initiate innate immune responses in the central nervous system prior to the onset of Aβ deposition. Cover Image for this issue: https://doi.org/10.1111/jnc.14773.


Characterization of sabatolimab, a novel immunotherapy with immuno-myeloid activity directed against TIM-3 receptor.

  • Stephanie Schwartz‎ et al.
  • Immunotherapy advances‎
  • 2022‎

Sabatolimab is a humanized monoclonal antibody (hIgG4, S228P) directed against human T-cell immunoglobulin domain and mucin domain-3 (TIM-3). Herein, we describe the development and characterization of sabatolimab.


Ear2 deletion causes early memory and learning deficits in APP/PS1 mice.

  • Markus P Kummer‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

To assess the consequences of locus ceruleus (LC) degeneration and subsequent noradrenaline (NA) deficiency in early Alzheimer's disease (AD), mice overexpressing mutant amyloid precursor protein and presenilin-1 (APP/PS1) were crossed with Ear2(-/-) mice that have a severe loss of LC neurons projecting to the hippocampus and neocortex. Testing spatial memory and hippocampal long-term potentiation revealed an impairment in APP/PS1 Ear2(-/-) mice, whereas APP/PS1 or Ear2(-/-) mice showed only minor changes. These deficits were associated with distinct synaptic changes including reduced expression of the NMDA 2A subunit and increased levels of NMDA receptor 2B in APP/PS1 Ear2(-/-) mice. Acute pharmacological replacement of NA by L-threo-DOPS partially restored phosphorylation of β-CaMKII and spatial memory performance in APP/PS1 Ear2(-/-) mice. These changes were not accompanied by altered APP processing or amyloid β peptide (Aβ) deposition. Thus, early LC degeneration and subsequent NA reduction may contribute to cognitive deficits via CaMKII and NMDA receptor dysfunction independent of Aβ and suggests that NA supplementation could be beneficial in treating AD.


Whole-Genome Characterization of Epidemic Neisseria meningitidis Serogroup C and Resurgence of Serogroup W, Niger, 2015.

  • Cecilia B Kretz‎ et al.
  • Emerging infectious diseases‎
  • 2016‎

In 2015, Niger reported the largest epidemic of Neisseria meningitidis serogroup C (NmC) meningitis in sub-Saharan Africa. The NmC epidemic coincided with serogroup W (NmW) cases during the epidemic season, resulting in a total of 9,367 meningococcal cases through June 2015. To clarify the phylogenetic association, genetic evolution, and antibiotic determinants of the meningococcal strains in Niger, we sequenced the genomes of 102 isolates from this epidemic, comprising 81 NmC and 21 NmW isolates. The genomes of 82 isolates were completed, and all 102 were included in the analysis. All NmC isolates had sequence type 10217, which caused the outbreaks in Nigeria during 2013-2014 and for which a clonal complex has not yet been defined. The NmC isolates from Niger were substantially different from other NmC isolates collected globally. All NmW isolates belonged to clonal complex 11 and were closely related to the isolates causing recent outbreaks in Africa.


SHP2 blockade enhances anti-tumor immunity via tumor cell intrinsic and extrinsic mechanisms.

  • Ye Wang‎ et al.
  • Scientific reports‎
  • 2021‎

SHP2 is a ubiquitous tyrosine phosphatase involved in regulating both tumor and immune cell signaling. In this study, we discovered a novel immune modulatory function of SHP2. Targeting this protein with allosteric SHP2 inhibitors promoted anti-tumor immunity, including enhancing T cell cytotoxic function and immune-mediated tumor regression. Knockout of SHP2 using CRISPR/Cas9 gene editing showed that targeting SHP2 in cancer cells contributes to this immune response. Inhibition of SHP2 activity augmented tumor intrinsic IFNγ signaling resulting in enhanced chemoattractant cytokine release and cytotoxic T cell recruitment, as well as increased expression of MHC Class I and PD-L1 on the cancer cell surface. Furthermore, SHP2 inhibition diminished the differentiation and inhibitory function of immune suppressive myeloid cells in the tumor microenvironment. SHP2 inhibition enhanced responses to anti-PD-1 blockade in syngeneic mouse models. Overall, our study reveals novel functions of SHP2 in tumor immunity and proposes that targeting SHP2 is a promising strategy for cancer immunotherapy.


SFRP1 modulates astrocyte-to-microglia crosstalk in acute and chronic neuroinflammation.

  • Javier Rueda-Carrasco‎ et al.
  • EMBO reports‎
  • 2021‎

Neuroinflammation is a common feature of many neurodegenerative diseases. It fosters a dysfunctional neuron-microglia-astrocyte crosstalk that, in turn, maintains microglial cells in a perniciously reactive state that often enhances neuronal damage. The molecular components that mediate this critical communication are not fully explored. Here, we show that secreted frizzled-related protein 1 (SFRP1), a multifunctional regulator of cell-to-cell communication, is part of the cellular crosstalk underlying neuroinflammation. In mouse models of acute and chronic neuroinflammation, SFRP1, largely astrocyte-derived, promotes and sustains microglial activation, and thus a chronic inflammatory state. SFRP1 promotes the upregulation of components of the hypoxia-induced factor-dependent inflammatory pathway and, to a lower extent, of those downstream of the nuclear factor-kappa B. We thus propose that SFRP1 acts as an astrocyte-to-microglia amplifier of neuroinflammation, representing a potential valuable therapeutic target for counteracting the harmful effect of chronic inflammation in several neurodegenerative diseases.


NLRP3-directed antisense oligonucleotides reduce microglial immunoactivities in vitro.

  • Charlotte Braatz‎ et al.
  • Journal of neurochemistry‎
  • 2023‎

Alzheimer's disease (AD) is associated with the cerebral deposition of Amyloid-β (Aβ) peptide, which leads to NLRP3 inflammasome activation and subsequent release of interleukin-1β (IL-1β) and interleukin-18 (IL-18). NLRP3 reduction has been found to increase microglial clearance, protect from synapse loss, and suppress both the changes to synaptic plasticity and spatial memory dysfunction observed in murine AD models. Here, we test whether NLRP3-directed antisense oligonucleotides (ASOs) can be harnessed as immune modulators in primary murine microglia and human THP-1 cells. NLRP3 mRNA degradation was achieved at 72 h of ASO treatment in primary murine microglia. Consequently, NLRP3-directed ASOs significantly reduced the levels of cleaved caspase-1 and mature IL-1β when microglia were either activated by LPS and nigericin or LPS and Aβ. In human THP-1 cells NLRP3-targeted ASOs also significantly reduced the LPS plus nigericin- or LPS plus Aβ-induced release of mature IL-1β. Together, NLRP3-directed ASOs can suppress NLRP3 inflammasome activity and subsequent release of IL-1β in primary murine microglia and THP-1 cells. ASOs may represent a new and alternative approach to modulate NLRP3 inflammasome activation in neurodegenerative diseases, in addition to attempts to inhibit the complex pharmacologically.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: