Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy.

  • Meghna Kannan‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2017‎

The family of WD40-repeat (WDR) proteins is one of the largest in eukaryotes, but little is known about their function in brain development. Among 26 WDR genes assessed, we found 7 displaying a major impact in neuronal morphology when inactivated in mice. Remarkably, all seven genes showed corpus callosum defects, including thicker (Atg16l1, Coro1c, Dmxl2, and Herc1), thinner (Kif21b and Wdr89), or absent corpus callosum (Wdr47), revealing a common role for WDR genes in brain connectivity. We focused on the poorly studied WDR47 protein sharing structural homology with LIS1, which causes lissencephaly. In a dosage-dependent manner, mice lacking Wdr47 showed lethality, extensive fiber defects, microcephaly, thinner cortices, and sensory motor gating abnormalities. We showed that WDR47 shares functional characteristics with LIS1 and participates in key microtubule-mediated processes, including neural stem cell proliferation, radial migration, and growth cone dynamics. In absence of WDR47, the exhaustion of late cortical progenitors and the consequent decrease of neurogenesis together with the impaired survival of late-born neurons are likely yielding to the worsening of the microcephaly phenotype postnatally. Interestingly, the WDR47-specific C-terminal to LisH (CTLH) domain was associated with functions in autophagy described in mammals. Silencing WDR47 in hypothalamic GT1-7 neuronal cells and yeast models independently recapitulated these findings, showing conserved mechanisms. Finally, our data identified superior cervical ganglion-10 (SCG10) as an interacting partner of WDR47. Taken together, these results provide a starting point for studying the implications of WDR proteins in neuronal regulation of microtubules and autophagy.


Characterization of Two Mouse Chd7 Heterozygous Loss-of-Function Models Shows Dysgenesis of the Corpus Callosum and Previously Unreported Features of CHARGE Syndrome.

  • Stephan C Collins‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

CHARGE syndrome is a rare congenital disorder frequently caused by mutations in the chromodomain helicase DNA-binding protein-7 CHD7. Here, we developed and systematically characterized two genetic mouse models with identical, heterozygous loss-of-function mutation of the Chd7 gene engineered on inbred and outbred genetic backgrounds. We found that both models showed consistent phenotypes with the core clinical manifestations seen in CHARGE syndrome, but the phenotypes in the inbred Chd7 model were more severe, sometimes having reduced penetrance and included dysgenesis of the corpus callosum, hypoplasia of the hippocampus, abnormal retrosplenial granular cortex, ventriculomegaly, hyperactivity, growth delays, impaired grip strength and repetitive behaviors. Interestingly, we also identified previously unreported features including reduced levels of basal insulin and reduced blood lipids. We suggest that the phenotypic variation reported in individuals diagnosed with CHARGE syndrome is likely due to the genetic background and modifiers. Finally, our study provides a valuable resource, making it possible for mouse biologists interested in Chd7 to make informed choices on which mouse model they should use to study phenotypes of interest and investigate in more depth the underlying cellular and molecular mechanisms.


TUBG1 missense variants underlying cortical malformations disrupt neuronal locomotion and microtubule dynamics but not neurogenesis.

  • Ekaterina L Ivanova‎ et al.
  • Nature communications‎
  • 2019‎

De novo heterozygous missense variants in the γ-tubulin gene TUBG1 have been linked to human malformations of cortical development associated with intellectual disability and epilepsy. Here, we investigated through in-utero electroporation and in-vivo studies, how four of these variants affect cortical development. We show that TUBG1 mutants affect neuronal positioning, disrupting the locomotion of new-born neurons but without affecting progenitors' proliferation. We further demonstrate that pathogenic TUBG1 variants are linked to reduced microtubule dynamics but without major structural nor functional centrosome defects in subject-derived fibroblasts. Additionally, we developed a knock-in Tubg1Y92C/+ mouse model and assessed consequences of the mutation. Although centrosomal positioning in bipolar neurons is correct, they fail to initiate locomotion. Furthermore, Tubg1Y92C/+ animals show neuroanatomical and behavioral defects and increased epileptic cortical activity. We show that Tubg1Y92C/+ mice partially mimic the human phenotype and therefore represent a relevant model for further investigations of the physiopathology of cortical malformations.


Modulation of large dense core vesicle insulin content mediates rhythmic hormone release from pancreatic beta cells over the 24h cycle.

  • Aurore Quinault‎ et al.
  • PloS one‎
  • 2018‎

The rhythmic nature of insulin secretion over the 24h cycle in pancreatic islets has been mostly investigated using transcriptomics studies showing that modulation of insulin secretion over this cycle is achieved via distal stages of insulin secretion. We set out to measure β-cell exocytosis using in depth cell physiology techniques at several time points. In agreement with the activity and feeding pattern of nocturnal rodents, we find that C57/Bl6J islets in culture for 24h exhibit higher insulin secretion during the corresponding dark phase than in the light phase (Zeitgeber Time ZT20 and ZT8, respectively, in vivo). Glucose-induced insulin secretion is increased by 21% despite normal intracellular Ca2+ transients and depolarization-evoked exocytosis, as measured by whole-cell capacitance measurements. This paradox is explained by a 1.37-fold increase in beta cell insulin content. Ultramorphological analyses show that vesicle size and density are unaltered, demonstrating that intravesicular insulin content per granule is modulated over the 24h cycle. Proinsulin levels did not change between ZT8 and ZT20. Islet glucagon content was inversely proportional to insulin content indicating that this unique feature is likely to support a physiological role. Microarray data identified the differential expression of 301 transcripts, of which 26 are miRNAs and 54 are known genes (including C2cd4b, a gene previously involved in insulin processing, and clock genes such as Bmal1 and Rev-erbα). Mouse β-cell secretion over the full course of the 24h cycle may rely on several distinct cellular functions but late night increase in insulin secretion depends solely on granule insulin content.


Topological analysis of metabolic networks integrating co-segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series.

  • Marc-Emmanuel Dumas‎ et al.
  • Genome medicine‎
  • 2016‎

The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus occurs through complex organ-specific cellular mechanisms and networks contributing to impaired insulin secretion and insulin resistance. Genome-wide gene expression profiling systems can dissect the genetic contributions to metabolome and transcriptome regulations. The integrative analysis of multiple gene expression traits and metabolic phenotypes (i.e., metabotypes) together with their underlying genetic regulation remains a challenge. Here, we introduce a systems genetics approach based on the topological analysis of a combined molecular network made of genes and metabolites identified through expression and metabotype quantitative trait locus mapping (i.e., eQTL and mQTL) to prioritise biological characterisation of candidate genes and traits.


Progression of diet-induced diabetes in C57BL6J mice involves functional dissociation of Ca2(+) channels from secretory vesicles.

  • Stephan C Collins‎ et al.
  • Diabetes‎
  • 2010‎

The aim of the study was to elucidate the cellular mechanism underlying the suppression of glucose-induced insulin secretion in mice fed a high-fat diet (HFD) for 15 weeks.


Large-scale neuroanatomical study uncovers 198 gene associations in mouse brain morphogenesis.

  • Stephan C Collins‎ et al.
  • Nature communications‎
  • 2019‎

Brain morphogenesis is an important process contributing to higher-order cognition, however our knowledge about its biological basis is largely incomplete. Here we analyze 118 neuroanatomical parameters in 1,566 mutant mouse lines and identify 198 genes whose disruptions yield NeuroAnatomical Phenotypes (NAPs), mostly affecting structures implicated in brain connectivity. Groups of functionally similar NAP genes participate in pathways involving the cytoskeleton, the cell cycle and the synapse, display distinct fetal and postnatal brain expression dynamics and importantly, their disruption can yield convergent phenotypic patterns. 17% of human unique orthologues of mouse NAP genes are known loci for cognitive dysfunction. The remaining 83% constitute a vast pool of genes newly implicated in brain architecture, providing the largest study of mouse NAP genes and pathways. This offers a complementary resource to human genetic studies and predict that many more genes could be involved in mammalian brain morphogenesis.


Dissecting the autism-associated 16p11.2 locus identifies multiple drivers in neuroanatomical phenotypes and unveils a male-specific role for the major vault protein.

  • Perrine F Kretz‎ et al.
  • Genome biology‎
  • 2023‎

Using mouse genetic studies and systematic assessments of brain neuroanatomical phenotypes, we set out to identify which of the 30 genes causes brain defects at the autism-associated 16p11.2 locus.


Transcriptome Profiling in Rat Inbred Strains and Experimental Cross Reveals Discrepant Genetic Architecture of Genome-Wide Gene Expression.

  • Pamela J Kaisaki‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2016‎

To test the impact of genetic heterogeneity on cis- and trans-mediated mechanisms of gene expression regulation, we profiled the transcriptome of adipose tissue in 20 inbred congenic strains derived from diabetic Goto-Kakizaki (GK) rats and Brown-Norway (BN) controls, which contain well-defined blocks (1-183 Mb) of genetic polymorphisms, and in 123 genetically heterogeneous rats of an (GK × BN)F2 offspring. Within each congenic we identified 73-1351 differentially expressed genes (DEGs), only 7.7% of which mapped within the congenic blocks, and which may be regulated in cis The remainder localized outside the blocks, and therefore must be regulated in trans Most trans-regulated genes exhibited approximately twofold expression changes, consistent with monoallelic expression. Altered biological pathways were replicated between congenic strains sharing blocks of genetic polymorphisms, but polymorphisms at different loci also had redundant effects on transcription of common distant genes and pathways. We mapped 2735 expression quantitative trait loci (eQTL) in the F2 cross, including 26% predominantly cis-regulated genes, which validated DEGs in congenic strains. A hotspot of >300 eQTL in a 10 cM region of chromosome 1 was enriched in DEGs in a congenic strain. However, many DEGs among GK, BN and congenic strains did not replicate as eQTL in F2 hybrids, demonstrating distinct mechanisms of gene expression when alleles segregate in an outbred population or are fixed homozygous across the entire genome or in short genomic regions. Our analysis provides conceptual advances in our understanding of the complex architecture of genome expression and pathway regulation, and suggests a prominent impact of epistasis and monoallelic expression on gene transcription.


Pathophysiological, genetic and gene expression features of a novel rodent model of the cardio-metabolic syndrome.

  • Robert H Wallis‎ et al.
  • PloS one‎
  • 2008‎

Complex etiology and pathogenesis of pathophysiological components of the cardio-metabolic syndrome have been demonstrated in humans and animal models.


The Immune Signaling Adaptor LAT Contributes to the Neuroanatomical Phenotype of 16p11.2 BP2-BP3 CNVs.

  • Maria Nicla Loviglio‎ et al.
  • American journal of human genetics‎
  • 2017‎

Copy-number changes in 16p11.2 contribute significantly to neuropsychiatric traits. Besides the 600 kb BP4-BP5 CNV found in 0.5%-1% of individuals with autism spectrum disorders and schizophrenia and whose rearrangement causes reciprocal defects in head size and body weight, a second distal 220 kb BP2-BP3 CNV is likewise a potent driver of neuropsychiatric, anatomical, and metabolic pathologies. These two CNVs are engaged in complex reciprocal chromatin looping, intimating a functional relationship between genes in these regions that might be relevant to pathomechanism. We assessed the drivers of the distal 16p11.2 duplication by overexpressing each of the nine encompassed genes in zebrafish. Only overexpression of LAT induced a reduction of brain proliferating cells and concomitant microcephaly. Consistently, suppression of the zebrafish ortholog induced an increase of proliferation and macrocephaly. These phenotypes were not unique to zebrafish; Lat knockout mice show brain volumetric changes. Consistent with the hypothesis that LAT dosage is relevant to the CNV pathology, we observed similar effects upon overexpression of CD247 and ZAP70, encoding members of the LAT signalosome. We also evaluated whether LAT was interacting with KCTD13, MVP, and MAPK3, major driver and modifiers of the proximal 16p11.2 600 kb BP4-BP5 syndromes, respectively. Co-injected embryos exhibited an increased microcephaly, suggesting the presence of genetic interaction. Correspondingly, carriers of 1.7 Mb BP1-BP5 rearrangements that encompass both the BP2-BP3 and BP4-BP5 loci showed more severe phenotypes. Taken together, our results suggest that LAT, besides its well-recognized function in T cell development, is a major contributor of the 16p11.2 220 kb BP2-BP3 CNV-associated neurodevelopmental phenotypes.


Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons.

  • Sophie Calderari‎ et al.
  • Genomics‎
  • 2018‎

The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q<0.05; enrichment range 1.40-9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting β-cells and neurons and underline the existence of trans‑nosology pathways in diabetes and its co-morbidities.


Models of KPTN-related disorder implicate mTOR signalling in cognitive and overgrowth phenotypes.

  • Maria O Levitin‎ et al.
  • Brain : a journal of neurology‎
  • 2023‎

KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.


A Positively Selected MAGEE2 LoF Allele Is Associated with Sexual Dimorphism in Human Brain Size and Shows Similar Phenotypes in Magee2 Null Mice.

  • Michał Szpak‎ et al.
  • Molecular biology and evolution‎
  • 2021‎

A nonsense allele at rs1343879 in human MAGEE2 on chromosome X has previously been reported as a strong candidate for positive selection in East Asia. This premature stop codon causing ∼80% protein truncation is characterized by a striking geographical pattern of high population differentiation: common in Asia and the Americas (up to 84% in the 1000 Genomes Project East Asians) but rare elsewhere. Here, we generated a Magee2 mouse knockout mimicking the human loss-of-function mutation to study its functional consequences. The Magee2 null mice did not exhibit gross abnormalities apart from enlarged brain structures (13% increased total brain area, P = 0.0022) in hemizygous males. The area of the granular retrosplenial cortex responsible for memory, navigation, and spatial information processing was the most severely affected, exhibiting an enlargement of 34% (P = 3.4×10-6). The brain size in homozygous females showed the opposite trend of reduced brain size, although this did not reach statistical significance. With these insights, we performed human association analyses between brain size measurements and rs1343879 genotypes in 141 Chinese volunteers with brain MRI scans, replicating the sexual dimorphism seen in the knockout mouse model. The derived stop gain allele was significantly associated with a larger volume of gray matter in males (P = 0.00094), and smaller volumes of gray (P = 0.00021) and white (P = 0.0015) matter in females. It is unclear whether or not the observed neuroanatomical phenotypes affect behavior or cognition, but it might have been the driving force underlying the positive selection in humans.


Biallelic variants in TRAPPC10 cause a microcephalic TRAPPopathy disorder in humans and mice.

  • Lettie E Rawlins‎ et al.
  • PLoS genetics‎
  • 2022‎

The highly evolutionarily conserved transport protein particle (TRAPP) complexes (TRAPP II and III) perform fundamental roles in subcellular trafficking pathways. Here we identified biallelic variants in TRAPPC10, a component of the TRAPP II complex, in individuals with a severe microcephalic neurodevelopmental disorder. Molecular studies revealed a weakened interaction between mutant TRAPPC10 and its putative adaptor protein TRAPPC2L. Studies of patient lymphoblastoid cells revealed an absence of TRAPPC10 alongside a concomitant absence of TRAPPC9, another key TRAPP II complex component associated with a clinically overlapping neurodevelopmental disorder. The TRAPPC9/10 reduction phenotype was recapitulated in TRAPPC10-/- knockout cells, which also displayed a membrane trafficking defect. Notably, both the reduction in TRAPPC9 levels and the trafficking defect in these cells could be rescued by wild type but not mutant TRAPPC10 gene constructs. Moreover, studies of Trappc10-/- knockout mice revealed neuroanatomical brain defects and microcephaly, paralleling findings seen in the human condition as well as in a Trappc9-/- mouse model. Together these studies confirm autosomal recessive TRAPPC10 variants as a cause of human disease and define TRAPP-mediated pathomolecular outcomes of importance to TRAPPC9 and TRAPPC10 mediated neurodevelopmental disorders in humans and mice.


Novel role of the synaptic scaffold protein Dlgap4 in ventricular surface integrity and neuronal migration during cortical development.

  • Delfina M Romero‎ et al.
  • Nature communications‎
  • 2022‎

Subcortical heterotopias are malformations associated with epilepsy and intellectual disability, characterized by the presence of ectopic neurons in the white matter. Mouse and human heterotopia mutations were identified in the microtubule-binding protein Echinoderm microtubule-associated protein-like 1, EML1. Further exploring pathological mechanisms, we identified a patient with an EML1-like phenotype and a novel genetic variation in DLGAP4. The protein belongs to a membrane-associated guanylate kinase family known to function in glutamate synapses. We showed that DLGAP4 is strongly expressed in the mouse ventricular zone (VZ) from early corticogenesis, and interacts with key VZ proteins including EML1. In utero electroporation of Dlgap4 knockdown (KD) and overexpression constructs revealed a ventricular surface phenotype including changes in progenitor cell dynamics, morphology, proliferation and neuronal migration defects. The Dlgap4 KD phenotype was rescued by wild-type but not mutant DLGAP4. Dlgap4 is required for the organization of radial glial cell adherens junction components and actin cytoskeleton dynamics at the apical domain, as well as during neuronal migration. Finally, Dlgap4 heterozygous knockout (KO) mice also show developmental defects in the dorsal telencephalon. We hence identify a synapse-related scaffold protein with pleiotropic functions, influencing the integrity of the developing cerebral cortex.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: