Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Efficacy of avapritinib versus best available therapy in the treatment of advanced systemic mastocytosis.

  • Andreas Reiter‎ et al.
  • Leukemia‎
  • 2022‎

Advanced systemic mastocytosis (AdvSM) is a rare myeloid neoplasm associated with poor overall survival (OS). This study (NCT04695431) compared clinical outcomes between patients with AdvSM treated with avapritinib in the Phase 1 EXPLORER (NCT0256198) and Phase 2 PATHFINDER (NCT03580655) trials (N = 176) and patients treated with best available therapy (BAT; N = 141). A multi-center, observational, retrospective chart review study was conducted at six study sites (four European, two American) to collect data from patients with AdvSM who received BAT; these data were pooled with data from EXPLORER and PATHFINDER. Comparisons between outcomes of OS, duration of treatment (DOT), and maximum reduction in serum tryptase were conducted between the treatment cohorts, with adjustment for key covariates. The results indicated that the avapritinib cohort had significantly better survival (adjusted hazard ratio (HR) (95% confidence interval (CI)): 0.48 (0.29, 0.79); p = 0.004) and significantly longer DOT (HR: 0.36 (0.26, 0.51); p < 0.001) compared to the BAT cohort. Additionally, the mean difference in percentage maximum reduction in serum tryptase levels was 60.3% greater in the avapritinib cohort (95% CI: -72.8, -47.9; p < 0.001). With no randomized controlled trials comparing avapritinib to BAT, these data offer crucial insights into the improved efficacy of avapritinib for the treatment of AdvSM.


Pharmacologic inhibition of STAT5 in acute myeloid leukemia.

  • Bettina Wingelhofer‎ et al.
  • Leukemia‎
  • 2018‎

The transcription factor STAT5 is an essential downstream mediator of many tyrosine kinases (TKs), particularly in hematopoietic cancers. STAT5 is activated by FLT3-ITD, which is a constitutively active TK driving the pathogenesis of acute myeloid leukemia (AML). Since STAT5 is a critical mediator of diverse malignant properties of AML cells, direct targeting of STAT5 is of significant clinical value. Here, we describe the development and preclinical evaluation of a novel, potent STAT5 SH2 domain inhibitor, AC-4-130, which can efficiently block pathological levels of STAT5 activity in AML. AC-4-130 directly binds to STAT5 and disrupts STAT5 activation, dimerization, nuclear translocation, and STAT5-dependent gene transcription. Notably, AC-4-130 substantially impaired the proliferation and clonogenic growth of human AML cell lines and primary FLT3-ITD+ AML patient cells in vitro and in vivo. Furthermore, AC-4-130 synergistically increased the cytotoxicity of the JAK1/2 inhibitor Ruxolitinib and the p300/pCAF inhibitor Garcinol. Overall, the synergistic effects of AC-4-130 with TK inhibitors (TKIs) as well as emerging treatment strategies provide new therapeutic opportunities for leukemia and potentially other cancers.


Phenotypic characterization of leukemia-initiating stem cells in chronic myelomonocytic leukemia.

  • Gregor Eisenwort‎ et al.
  • Leukemia‎
  • 2021‎

Chronic myelomonocytic leukemia (CMML) is a stem cell-derived neoplasm characterized by dysplasia, uncontrolled expansion of monocytes, and substantial risk to transform to secondary acute myeloid leukemia (sAML). So far, little is known about CMML-initiating cells. We found that leukemic stem cells (LSC) in CMML reside in a CD34+/CD38- fraction of the malignant clone. Whereas CD34+/CD38- cells engrafted NSGS mice with overt CMML, no CMML was produced by CD34+/CD38+ progenitors or the bulk of CD34- monocytes. CMML LSC invariably expressed CD33, CD117, CD123 and CD133. In a subset of patients, CMML LSC also displayed CD52, IL-1RAP and/or CLL-1. CMML LSC did not express CD25 or CD26. However, in sAML following CMML, the LSC also expressed CD25 and high levels of CD114, CD123 and IL-1RAP. No correlations between LSC phenotypes, CMML-variant, mutation-profiles, or clinical course were identified. Pre-incubation of CMML LSC with gemtuzumab-ozogamicin or venetoclax resulted in decreased growth and impaired engraftment in NSGS mice. Together, CMML LSC are CD34+/CD38- cells that express a distinct profile of surface markers and target-antigens. During progression to sAML, LSC acquire or upregulate certain cytokine receptors, including CD25, CD114 and CD123. Characterization of CMML LSC should facilitate their enrichment and the development of LSC-eradicating therapies.


CEBPA-mutated leukemia is sensitive to genetic and pharmacological targeting of the MLL1 complex.

  • Luisa Schmidt‎ et al.
  • Leukemia‎
  • 2019‎

The gene encoding the transcription factor C/EBPα is mutated in 10-15% of acute myeloid leukemia (AML) patients. N-terminal CEBPA mutations cause ablation of full-length C/EBPα without affecting the expression of a shorter oncogenic isoform, termed p30. The mechanistic basis of p30-induced leukemogenesis is incompletely understood. Here, we demonstrate that the MLL1 histone-methyltransferase complex represents a critical actionable vulnerability in CEBPA-mutated AML. Oncogenic C/EBPα p30 and MLL1 show global co-localization on chromatin and p30 exhibits robust physical interaction with the MLL1 complex. CRISPR/Cas9-mediated mutagenesis of MLL1 results in proliferation arrest and myeloid differentiation in C/EBPα p30-expressing cells. In line, CEBPA-mutated hematopoietic progenitor cells are hypersensitive to pharmacological targeting of the MLL1 complex. Inhibitor treatment impairs proliferation and restores myeloid differentiation potential in mouse and human AML cells with CEBPA mutations. Finally, we identify the transcription factor GATA2 as a direct critical target of the p30-MLL1 interaction. Altogether, we show that C/EBPα p30 requires the MLL1 complex to regulate oncogenic gene expression and that CEBPA-mutated AML is hypersensitive to perturbation of the MLL1 complex. These findings identify the MLL1 complex as a potential therapeutic target in AML with CEBPA mutations.


KIT D816 mutated/CBF-negative acute myeloid leukemia: a poor-risk subtype associated with systemic mastocytosis.

  • Mohamad Jawhar‎ et al.
  • Leukemia‎
  • 2019‎

KIT D816 mutations (KIT D816mut) are strongly associated with systemic mastocytosis (SM) but are also detectable in acute myeloid leukemia (AML), where they represent an adverse prognostic factor in combination with core binding factor (CBF) fusion genes. Here, we evaluated the clinical and molecular features of KIT D816mut/CBF-negative (CBFneg) AML, a previously uncharacterized combination. All KIT D816mut/CBFneg cases (n = 40) had histologically proven SM with associated AML (SM-AML). Molecular analyses revealed at least one additional somatic mutation (median, n = 3) beside KIT D816 (e.g., SRSF2, 38%; ASXL1, 31%; RUNX1, 34%) in 32/32 (100%) patients. Secondary AML evolved in 29/40 (73%) patients from SM ± associated myeloid neoplasm. Longitudinal molecular and cytogenetic analyses revealed the acquisition of new mutations and/or karyotype evolution in 15/16 (94%) patients at the time of SM-AML. Median overall survival (OS) was 5.4 months. A screen of two independent AML databases (AMLdatabases) revealed remarkable similarities between KIT D816mut/CBFneg SM-AML and KIT D816mut/CBFneg AMLdatabases (n = 69) with regard to KIT D816mut variant allele frequency, mutation profile, aberrant karyotype, and OS suggesting underlying SM in a significant proportion of AMLdatabases patients. Bone marrow histology and reclassification as SM-AML has important clinical implications regarding prognosis and potential inclusion of KIT inhibitors in treatment concepts.


Twins with different personalities: STAT5B-but not STAT5A-has a key role in BCR/ABL-induced leukemia.

  • Sebastian Kollmann‎ et al.
  • Leukemia‎
  • 2019‎

Deregulation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway is found in cancer with STAT5A/B controlling leukemic cell survival and disease progression. As mutations in STAT5B, but not STAT5A, have been frequently described in hematopoietic tumors, we used BCR/ABL as model systems to investigate the contribution of STAT5A or STAT5B for leukemogenesis. The absence of STAT5A decreased cell survival and colony formation. Even more drastic effects were observed in the absence of STAT5B. STAT5B-deficient cells formed BCR/ABL+ colonies or stable cell lines at low frequency. The rarely evolving Stat5b-/- cell lines expressed enhanced levels of BCR/ABL oncoprotein compared to wild-type cells. In line, Stat5b-/- leukemic cells induced leukemia with a significantly prolonged disease onset, whereas Stat5a-/- cells rapidly caused a fatal disease superimposable to wild-type cells. RNA-sequencing (RNA-seq) profiling revealed a marked enhancement of interferon (IFN)-α and IFN-γ signatures in Stat5b-/- cells. Inhibition of IFN responses rescued BCR/ABL+ colony formation of Stat5b-/--deficient cells. A downregulated IFN response was also observed in patients suffering from leukemia carrying STAT5B mutations. Our data define STAT5B as major STAT5 isoform driving BCR/ABL+ leukemia. STAT5B enables transformation by suppressing IFN-α/γ, thereby facilitating leukemogenesis. Our findings might help explain the high frequency of STAT5B mutations in hematopoietic tumors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: