Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Granulocyte maturation determines ability to release chromatin NETs and loss of DNA damage response; these properties are absent in immature AML granulocytes.

  • Emilie Lukášová‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

Terminally-differentiated cells cease to proliferate and acquire specific sets of expressed genes and functions distinguishing them from less differentiated and cancer cells. Mature granulocytes show lobular structure of cell nuclei with highly condensed chromatin in which HP1 proteins are replaced by MNEI. These structural features of chromatin correspond to low level of gene expression and the loss of some important functions as DNA damage repair, shown in this work and, on the other hand, acquisition of a new specific function consisting in the release of chromatin extracellular traps in response to infection by pathogenic microbes. Granulocytic differentiation is incomplete in myeloid leukemia and is manifested by persistence of lower levels of HP1γ and HP1β isoforms. This immaturity is accompanied by acquisition of DDR capacity allowing to these incompletely differentiated multi-lobed neutrophils of AML patients to respond to induction of DSB by γ-irradiation. Immature granulocytes persist frequently in blood of treated AML patients in remission. These granulocytes contrary to mature ones do not release chromatin for NETs after activation with phorbol myristate-12 acetate-13 and do not exert the neutrophil function in immune defence. We suggest therefore the detection of HP1 expression in granulocytes of AML patients as a very sensitive indicator of their maturation and functionality after the treatment. Our results show that the changes in chromatin structure underlie a major transition in functioning of the genome in immature granulocytes. They show further that leukemia stem cells can differentiate ex vivo to mature granulocytes despite carrying the translocation BCR/ABL.


Nuclear organization of PML bodies in leukaemic and multiple myeloma cells.

  • Jana Krejcí‎ et al.
  • Leukemia research‎
  • 2008‎

The nuclear arrangement of promyelocytic leukaemia nuclear bodies (PML NBs) was studied in vitro after the cell treatment by clinically used agents such as all-trans retinoic acid (RA) in human leukaemia and cytostatics or gamma radiation in multiple myeloma cells. In addition, the influence of phorbol ester (PMA) on PML NBs formation was analyzed. A reduced number of PML bodies, which led to relocation of PML NBs closer to the nuclear interior, mostly accompanied RA- and PMA-induced differentiation. Centrally located PML NBs were associated with transcriptional protein RNAP II and SC35 regions, which support importance of PML NBs in RNA processing that mostly proceeds within the nuclear interior. Conversely, the quantity of PML NBs was increased after cytostatic treatment, which caused re-distribution of PML NBs closer to the nuclear envelope. Here we showed correlations between the number of PML NBs and average Centre-to-PML distances. Moreover, a number of cells in S phase, especially during differentiation, influenced number of PML NBs. Studying the proteins involved in PML compartment, such as c-MYC, cell-type specific association of c-MYC and the PML NBs was observed in selected leukaemic cells undergoing differentiation, which was accompanied by c-MYC down-regulation.


Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants.

  • Martin Falk‎ et al.
  • Scientific reports‎
  • 2018‎

In this work, we shed new light on the highly debated issue of chromatin fragmentation in cryopreserved cells. Moreover, for the first time, we describe replicating cell-specific DNA damage and higher-order chromatin alterations after freezing and thawing. We identified DNA structural changes associated with the freeze-thaw process and correlated them with the viability of frozen and thawed cells. We simultaneously evaluated DNA defects and the higher-order chromatin structure of frozen and thawed cells with and without cryoprotectant treatment. We found that in replicating (S phase) cells, DNA was preferentially damaged by replication fork collapse, potentially leading to DNA double strand breaks (DSBs), which represent an important source of both genome instability and defects in epigenome maintenance. This induction of DNA defects by the freeze-thaw process was not prevented by any cryoprotectant studied. Both in replicating and non-replicating cells, freezing and thawing altered the chromatin structure in a cryoprotectant-dependent manner. Interestingly, cells with condensed chromatin, which was strongly stimulated by dimethyl sulfoxide (DMSO) prior to freezing had the highest rate of survival after thawing. Our results will facilitate the design of compounds and procedures to decrease injury to cryopreserved cells.


Distinct cellular responses to replication stress leading to apoptosis or senescence.

  • Emilie Lukášová‎ et al.
  • FEBS open bio‎
  • 2019‎

Replication stress (RS) is a major driver of genomic instability and tumorigenesis. Here, we investigated whether RS induced by the nucleotide analog fludarabine and specific kinase inhibitors [e.g. targeting checkpoint kinase 1 (Chk1) or ataxia telangiectasia and Rad3-related (ATR)] led to apoptosis or senescence in four cancer cell lines differing in TP53 mutation status and expression of lamin A/C (LA/C). RS resulted in uneven chromatin condensation in all cell types, as evidenced by the presence of metaphasic chromosomes with unrepaired DNA damage, as well as detection of less condensed chromatin in the same nucleus, frequent ultrafine anaphase bridges, and micronuclei. We observed that responses to these chromatin changes may be distinct in individual cell types, suggesting that expression of lamin A/C and lamin B1 (LB1) may play an important role in the transition of damaged cells to senescence. MCF7 mammary carcinoma cells harboring wild-type p53 (WT-p53) and LA/C responded to RS by transition to senescence with a significant reduction of lamin B receptor and LB1 proteins. In contrast, a lymphoid cancer cell line WSU-NHL (WT-p53) lacking LA/C and expressing low levels of LB1 died after several hours, while lines MEC-1 and SU-DHL-4, both with mutated p53, and SU-DHL-4 with mutations in LA/C, died at different rates by apoptosis. Our results show that, in addition to being influenced by p53 mutation status, the response to RS (apoptosis or senescence) may also be influenced by lamin A/C and LB1 status.


Mutant genetic background affects the functional rearrangement and kinetic properties of JMJD2b histone demethylase.

  • Eva Bártová‎ et al.
  • Journal of molecular biology‎
  • 2011‎

We have studied JMJD2b histone demethylase, which antagonizes H3K9me3 in the pericentromeric heterochromatin. In cells with a deficiency in the histone methyltransferase SUV39h, the level of full-length JMJD2b (JMJD2b-GFP-1086) at chromocenters was reduced, corresponding to a global decrease in JMJD2b and H3K9me3. In wild-type fibroblasts, the chromatin of ribosomal genes, which is dense with H3K9 methylation, lacked JMJD2b-GFP-1086, while mutant and truncated forms of JMJD2b densely occupied the nucleolar compartment. This implies that the PHD Zn-fingers and Tudor domains, which were removed in truncated JMJD2b, are responsible for the aberrant JMJD2b function. Intriguingly, the JMJD2b-GFP-1086 level was significantly higher in tumor cell nucleoli. The kinetic properties of JMJD2b-GFP-1086 in the nucleoli and nucleoplasm of normal and tumor cells were similar; ∼50% recovery of prebleached intensity was reached after <1 s. However, the mobile fraction of JMJD2b-GFP-1086 was increased in SUV39h-deficient cells. Similarly, the mobile fractions of mutant JMJD2b(1-424)H189A-GFP and truncated JMJD2b(1-424)GFP were greater than that measured for the full-length protein. We suggest that nucleoli are the site of an aberrant function of JMJD2b, the kinetic properties of which can be influenced by a mutant genetic background.


The BRCA1 alternative splicing variant Δ14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells.

  • Jan Sevcik‎ et al.
  • Cellular signalling‎
  • 2012‎

The BRCA1 gene codes for a protein involved in the DNA double strand break (DDSB) repair. Alongside the dominant full-length splicing form of BRCA1, numerous endogenously expressed alternative splicing variants of unknown significance have been described in various tissues. Some of them retain the original BRCA1 reading frame but lack several critical BRCA1 structural domains, suggesting an altered function of the resulting protein in the BRCA1-regulated processes. To characterize the effect of the BRCA1Δ14-15 splicing variant (with an in-frame deletion affecting the regulatory serine-containing domain) on the DDSB repair, we constructed the MCF-7 clones stably expressing the analyzed variant with/without a shRNA-mediated downregulation of the endogenous full-length wild-type BRCA1 expression. Our results show that the expression of the BRCA1Δ14-15 variant delays the γ-radiation-induced DDSB repair, alters the kinetics of irradiation-induced foci formation/decomposition and reduces the non-homologous end-joining capacity in MCF-7 cells. Therefore, the BRCA1Δ14-15 is not able to functionally replace the full-length wt BRCA1 in the DDSB repair. Our findings indicate that the endogenously expressed BRCA1 alternative splicing variants may negatively influence genome stability and support the growing evidence of the pathological potential of the sequence variants generated by an altered or misregulated alternative splicing in the process of mammary malignant transformation.


Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin.

  • Lenka Stixová‎ et al.
  • Epigenetics & chromatin‎
  • 2011‎

Protein exchange kinetics correlate with the level of chromatin condensation and, in many cases, with the level of transcription. We used fluorescence recovery after photobleaching (FRAP) to analyse the kinetics of 18 proteins and determine the relationships between nuclear arrangement, protein molecular weight, global transcription level, and recovery kinetics. In particular, we studied heterochromatin-specific heterochromatin protein 1β (HP1β) B lymphoma Mo-MLV insertion region 1 (BMI1), and telomeric-repeat binding factor 1 (TRF1) proteins, and nucleolus-related proteins, upstream binding factor (UBF) and RNA polymerase I large subunit (RPA194). We considered whether the trajectories and kinetics of particular proteins change in response to histone hyperacetylation by histone deacetylase (HDAC) inhibitors or after suppression of transcription by actinomycin D.


HP1β-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs.

  • Lenka Stixová‎ et al.
  • Epigenetics & chromatin‎
  • 2014‎

The repair of spontaneous and induced DNA lesions is a multistep process. Depending on the type of injury, damaged DNA is recognized by many proteins specifically involved in distinct DNA repair pathways.


Genome-wide reduction in H3K9 acetylation during human embryonic stem cell differentiation.

  • Jana Krejcí‎ et al.
  • Journal of cellular physiology‎
  • 2009‎

Epigenetic marks are important factors regulating the pluripotency and differentiation of human embryonic stem cells (hESCs). In this study, we analyzed H3K9 acetylation, an epigenetic mark associated with transcriptionally active chromatin, during endoderm-like differentiation of hESCs. ChIP-on-chip analysis revealed that differentiation results in a genome-wide decrease in promoter H3K9 acetylation. Among the 24,659 promoters analyzed, only 117 are likely to be involved in pluripotency, while 25 acetylated promoters are likely to be responsible for endoderm-like differentiation. In pluripotent hESCs, the chromosomes with the highest absolute levels of H3K9 acetylation are chromosomes 1, 6, 2, 17, 11, and 12 (listed in order of decreasing acetylation). Chromosomes 17, 19, 11, 20, 22, and 12 are the most prone to differentiation-related changes (both increased acetylation and deacetylation). When chromosome size (in Mb) was accounted for, the highest H3K9 acetylation levels were found on chromosome 19, 17, 6, 12, 11, and 1, and the greatest differentiation-associated decreases in H3K9 acetylation occurred on chromosomes 19, 17, 11, 12, 16, and 1. The gene density and size of individual chromosomes were strongly correlated with the levels of H3K9 acetylation. Our analyses point to chromosomes 11, 12, 17, and 19 as being critical for hESC pluripotency and endoderm-like differentiation. J. Cell. Physiol. 219: 677-687, 2009. (c) 2009 Wiley-Liss, Inc.


DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1β-Ser88.

  • Soňa Legartová‎ et al.
  • Cells‎
  • 2019‎

The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1β serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1β, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1β remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1β interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1β protein; thus, HP1β-S88ph could be considered as an important marker of DNA damage.


Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells.

  • Lenka Štefančíková‎ et al.
  • Journal of nanobiotechnology‎
  • 2016‎

Tumor targeting of radiotherapy represents a great challenge. The addition of multimodal nanoparticles, such as 3 nm gadolinium-based nanoparticles (GdBNs), has been proposed as a promising strategy to amplify the effects of radiation in tumors and improve diagnostics using the same agents. This singular property named theranostic is a unique advantage of GdBNs. It has been established that the amplification of radiation effects by GdBNs appears due to fast electronic processes. However, the influence of these nanoparticles on cells is not yet understood. In particular, it remains dubious how nanoparticles activated by ionizing radiation interact with cells and their constituents. A crucial question remains open of whether damage to the nucleus is necessary for the radiosensitization exerted by GdBNs (and other nanoparticles).


A nonfitting method using a spatial sine window transform for inhomogeneous effective-diffusion measurements by FRAP.

  • Darya Y Orlova‎ et al.
  • Biophysical journal‎
  • 2011‎

Determining averaged effective diffusion constants from experimental measurements of fluorescent proteins in an inhomogeneous medium in the presence of ligand-receptor interactions poses problems of analytical tractability. Here, we introduced a nonfitting method to evaluate the averaged effective diffusion coefficient of a region of interest (which may include a whole nucleus) by mathematical processing of the entire cellular two-dimensional spatial pattern of recovered fluorescence. Spatially and temporally resolved measurements of protein transport inside cells were obtained using the fluorescence recovery after photobleaching technique. Two-dimensional images of fluorescence patterns were collected by laser-scanning confocal microscopy. The method was demonstrated by applying it to an estimation of the mobility of green fluorescent protein-tagged heterochromatin protein 1 in the nuclei of living mouse embryonic fibroblasts. This approach does not require the mathematical solution of a corresponding system of diffusion-reaction equations that is typical of conventional fluorescence recovery after photobleaching data processing, and is most useful for investigating highly inhomogeneous areas, such as cell nuclei, which contain many protein foci and chromatin domains.


Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation.

  • Eva Bártová‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2008‎

Epigenetic histone (H3) modification patterns and the nuclear radial arrangement of select genetic elements were compared in human embryonic stem cells (hESCs) before and after differentiation. H3K9 acetylation, H3K9 trimethylation, and H3K79 monomethylation were reduced at the nuclear periphery of differentiated hESCs. Differentiation coincided with centromere redistribution, as evidenced by perinucleolar accumulation of the centromeric markers CENP-A and H3K9me3, central repositioning of centromeres 1, 5, 19, and rearrangement of other centromeres at the nuclear periphery. The radial positions of PML, RARalpha genes, and human chromosomes 10, 12, 15, 17, and 19 remained relatively stable as hESCs differentiated. However, the female inactive H3K27-trimethylated X chromosome occupied a more peripheral nuclear position in differentiated cells. Thus, pluripotent and differentiated hESCs have distinct nuclear patterns of heterochromatic structures (centromeres and inactive X chromosome) and epigenetic marks (H3K9me3, and H3K27me3), while relatively conserved gene density-related radial chromatin distributions are already largely established in undifferentiated hES cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: