Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Target selectivity of septal cholinergic neurons in the medial and lateral entorhinal cortex.

  • Srinidhi Desikan‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

The entorhinal cortex (EC) plays a pivotal role in processing and conveying spatial information to the hippocampus. It has long been known that EC neurons are modulated by cholinergic input from the medial septum. However, little is known as to how synaptic release of acetylcholine affects the different cell types in EC. Here we combined optogenetics and patch-clamp recordings to study the effect of cholinergic axon stimulation on distinct neurons in EC. We found dense cholinergic innervations that terminate in layer I and II (LI and LII). Light-activated stimulation of septal cholinergic projections revealed differential responses in excitatory and inhibitory neurons in LI and LII of both medial and lateral EC. We observed depolarizing responses mediated by nicotinic and muscarinic receptors primarily in putative serotonin receptor (p5HT3R)-expressing interneurons. Hyperpolarizing muscarinic receptor-mediated responses were found predominantly in excitatory cells. Additionally, some excitatory as well as a higher fraction of inhibitory neurons received mono- and/or polysynaptic GABAergic inputs, revealing that medial septum cholinergic neurons have the capacity to corelease GABA alongside acetylcholine. Notably, the synaptic effects of acetylcholine were similar in neurons of both medial and lateral EC. Taken together, our findings demonstrate that EC activity may be differentially modulated via the activation or the suppression of distinct subsets of LI and LII neurons by the septal cholinergic system.


Septal GABAergic inputs to CA1 govern contextual memory retrieval.

  • Arnau Sans-Dublanc‎ et al.
  • Science advances‎
  • 2020‎

The CA1 output region of the hippocampus plays an essential role in the retrieval of episodic memories. γ-Aminobutyric acid-releasing (GABAergic) long-range projections from the medial septum (MS) densely innervate the hippocampus, but whether septal inputs regulate memory expression remains elusive. We found that the MS to CA1 connection is recruited during recall of a contextual fear memory. Chemogenetic silencing of CA1-projecting MS neurons or septal GABAergic terminals within CA1 blocked memory retrieval. Photostimulation of septal GABAergic terminals in CA1 selectively inhibited interneurons. Abrogating septal GABAergic cells during retrieval disinhibited parvalbumin-rich (PV+) cells in CA1. Direct activation of CA1 PV+ cells impaired memory and prevented the induction of extracellular signal-regulated kinase/mitogen-activated kinase signaling in postsynaptic pyramidal neurons. Opposing disinhibition of hippocampal PV+ cells reversibly restored memory. Our data indicate that suppression of feed-forward inhibition onto CA1 by septal GABAergic neurons is an important mechanism in gating contextual fear behavior.


ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not β-Arrestin.

  • Friederike Saaber‎ et al.
  • Cell reports‎
  • 2019‎

Phosphorylation of heptahelical receptors is thought to regulate G protein signaling, receptor endocytosis, and non-canonical signaling via recruitment of β-arrestins. We investigated chemokine receptor functionality under phosphorylation-deficient and β-arrestin-deficient conditions by studying interneuron migration in the embryonic cortex. This process depends on CXCL12, CXCR4, G protein signaling and on the atypical CXCL12 receptor ACKR3. We found that phosphorylation was crucial, whereas β-arrestins were dispensable for ACKR3-mediated control of CXCL12 levels in vivo. Cortices of mice expressing phosphorylation-deficient ACKR3 exhibited a major interneuron migration defect, which was accompanied by excessive activation and loss of CXCR4. Cxcl12-overexpressing mice mimicked this phenotype. Excess CXCL12 caused lysosomal CXCR4 degradation, loss of CXCR4 responsiveness, and, ultimately, similar motility defects as Cxcl12 deficiency. By contrast, β-arrestin deficiency caused only a subtle migration defect mimicked by CXCR4 gain of function. These findings demonstrate that phosphorylation regulates atypical chemokine receptor function without β-arrestin involvement in chemokine sequestration and non-canonical signaling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: