Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Fibroblast-derived integration-free iPSC line ISRM-NBS1 from an 18-year-old Nijmegen Breakage Syndrome patient carrying the homozygous NBN c.657_661del5 mutation.

  • Soraia Martins‎ et al.
  • Stem cell research‎
  • 2019‎

Human fibroblasts cells from a female diagnosed with Nijmegen Breakage Syndrome (NBS) carrying the homozygous NBN c.657_661del5 mutation were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4, SOX2, NANOG, KLF4, c-MYC and LIN28. The derived iPSC line - ISRM-NBS1 was defined as pluripotent based on (i) expression of pluripotency-associated markers (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.955.


Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization.

  • Karola Kaefer‎ et al.
  • Hippocampus‎
  • 2019‎

Aberrant proteostasis of protein aggregation may lead to behavior disorders including chronic mental illnesses (CMI). Furthermore, the neuronal activity alterations that underlie CMI are not well understood. We recorded the local field potential and single-unit activity of the hippocampal CA1 region in vivo in rats transgenically overexpressing the Disrupted-in-Schizophrenia 1 (DISC1) gene (tgDISC1), modeling sporadic CMI. These tgDISC1 rats have previously been shown to exhibit DISC1 protein aggregation, disturbances in the dopaminergic system and attention-related deficits. Recordings were performed during exploration of familiar and novel open field environments and during sleep, allowing investigation of neuronal abnormalities in unconstrained behavior. Compared to controls, tgDISC1 place cells exhibited smaller place fields and decreased speed-modulation of their firing rates, demonstrating altered spatial coding and deficits in encoding location-independent sensory inputs. Oscillation analyses showed that tgDISC1 pyramidal neurons had higher theta phase locking strength during novelty, limiting their phase coding ability. However, their mean theta phases were more variable at the population level, reducing oscillatory network synchronization. Finally, tgDISC1 pyramidal neurons showed a lack of novelty-induced shift in their preferred theta and gamma firing phases, indicating deficits in coding of novel environments with oscillatory firing. By combining single cell and neuronal population analyses, we link DISC1 protein pathology with abnormal hippocampal neural coding and network synchrony, and thereby gain a more comprehensive understanding of CMI mechanisms.


Disrupted-in-Schizophrenia 1 (DISC1) Overexpression and Juvenile Immune Activation Cause Sex-Specific Schizophrenia-Related Psychopathology in Rats.

  • Taygun C Uzuneser‎ et al.
  • Frontiers in psychiatry‎
  • 2019‎

Synaptic pruning is a critical refinement step during neurodevelopment, and schizophrenia has been associated with overpruning of cortical dendritic spines. Both human studies and animal models implicate disrupted-in-schizophrenia 1 (DISC1) gene as a strong susceptibility factor for schizophrenia. Accumulating evidence supports the involvement of DISC1 protein in the modulation of synaptic elimination during critical periods of neurodevelopment and of dopamine D2-receptor-mediated signaling during adulthood. In many species, synaptic pruning occurs during juvenile and adolescent periods and is mediated by microglia, which can be over-activated by an immune challenge, giving rise to overpruning. Therefore, we sought to investigate possible interactions between a transgenic DISC1 model (tgDISC1) and juvenile immune activation (JIA) by the bacterial cell wall endotoxin lipopolysaccharide on the induction of schizophrenia-related behavioral and neurochemical disruptions in adult female and male rats. We examined possible behavioral aberrations along three major symptom dimensions of schizophrenia including psychosis, social and emotional disruptions, and cognitive impairments. We detected significant gene-environment interactions in the amphetamine-induced locomotion in female animals and in the amphetamine-induced anxiety in male animals. Surprisingly, gene-environment interactions improved social memory in both male and female animals. JIA alone disrupted spatial memory and recognition memory, but only in male animals. DISC1 overexpression alone induced an improvement in sensorimotor gating, but only in female animals. Our neurochemical analyses detected sex- and manipulation-dependent changes in the postmortem monoamine content of animals. Taken together, we here report sex-specific effects of environment and genotype as well as their interaction on behavioral phenotypes and neurochemical profiles relevant for schizophrenia.


IPSC-Derived Neuronal Cultures Carrying the Alzheimer's Disease Associated TREM2 R47H Variant Enables the Construction of an Aβ-Induced Gene Regulatory Network.

  • Soraia Martins‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Genes associated with immune response and inflammation have been identified as genetic risk factors for late-onset Alzheimer´s disease (LOAD). The rare R47H variant within triggering receptor expressed on myeloid cells 2 (TREM2) has been shown to increase the risk for developing Alzheimer's disease (AD) 2-3-fold. Here, we report the generation and characterization of a model of late-onset Alzheimer's disease (LOAD) using lymphoblast-derived induced pluripotent stem cells (iPSCs) from patients carrying the TREM2 R47H mutation, as well as from control individuals without dementia. All iPSCs efficiently differentiated into mature neuronal cultures, however AD neuronal cultures showed a distinct gene expression profile. Furthermore, manipulation of the iPSC-derived neuronal cultures with an Aβ-S8C dimer highlighted metabolic pathways, phagosome and immune response as the most perturbed pathways in AD neuronal cultures. Through the construction of an Aβ-induced gene regulatory network, we were able to identify an Aβ signature linked to protein processing in the endoplasmic reticulum (ER), which emphasized ER-stress, as a potential causal role in LOAD. Overall, this study has shown that our AD-iPSC based model can be used for in-depth studies to better understand the molecular mechanisms underlying the etiology of LOAD and provides new opportunities for screening of potential therapeutic targets.


Live imaging of prions reveals nascent PrPSc in cell-surface, raft-associated amyloid strings and webs.

  • Alexander Rouvinski‎ et al.
  • The Journal of cell biology‎
  • 2014‎

Mammalian prions refold host glycosylphosphatidylinositol-anchored PrP(C) into β-sheet-rich PrP(Sc). PrP(Sc) is rapidly truncated into a C-terminal PrP27-30 core that is stable for days in endolysosomes. The nature of cell-associated prions, their attachment to membranes and rafts, and their subcellular locations are poorly understood; live prion visualization has not previously been achieved. A key obstacle has been the inaccessibility of PrP27-30 epitopes. We overcame this hurdle by focusing on nascent full-length PrP(Sc) rather than on its truncated PrP27-30 product. We show that N-terminal PrP(Sc) epitopes are exposed in their physiological context and visualize, for the first time, PrP(Sc) in living cells. PrP(Sc) resides for hours in unexpected cell-surface, slow moving strings and webs, sheltered from endocytosis. Prion strings observed by light and scanning electron microscopy were thin, micrometer-long structures. They were firmly cell associated, resisted phosphatidylinositol-specific phospholipase C, aligned with raft markers, fluoresced with thioflavin, and were rapidly abolished by anti-prion glycans. Prion strings and webs are the first demonstration of membrane-anchored PrP(Sc) amyloids.


Aging-induced proteostatic changes in the rat hippocampus identify ARP3, NEB2 and BRAG2 as a molecular circuitry for cognitive impairment.

  • Philipp Ottis‎ et al.
  • PloS one‎
  • 2013‎

Disturbed proteostasis as a particular phenotype of the aging organism has been advanced in C. elegans experiments and is also conceived to underlie neurodegenerative diseases in humans. Here, we investigated whether particular changes in non-disease related proteostasis can be identified in the aged mammalian brain, and whether a particular signature of aberrant proteostasis is related to behavioral performance of learning and memory. Young (adult, n = 30) and aged (2 years, n = 50) Wistar rats were tested in the Morris Water Maze (MWM) to distinguish superior and inferior performers. For both young and old rats, the best and worst performers in the MWM were selected and the insoluble proteome, termed aggregome, was purified from the hippocampus as evidence for aberrant proteostasis. Quantitative proteomics (iTRAQ) was performed. The aged inferior performers were considered as a model for spontaneous, age-associated cognitive impairment. Whereas variability of the insoluble proteome increased with age, absolute changes in the levels of insoluble proteins were small compared to the findings in the whole C. elegans insoluble proteome. However, we identified proteins with aberrant proteostasis in aging. For the cognitively impaired rats, we identified a changed molecular circuitry of proteins selectively involved in F-actin remodeling, synapse building and long-term depression: actin related protein 3 (ARP3), neurabin II (NEB2) and IQ motif and SEC7 domain-containing protein 1 (BRAG2). We demonstrate that aberrant proteostasis is a specific phenotype of brain aging in mammals. We identify a distinct molecular circuitry where changes in proteostasis are characteristic for poor learning and memory performance in the wild type, aged rat. Our findings 1. establish the search for aberrant proteostasis as a successful strategy to identify neuronal dysfunction in deficient cognitive behavior, 2. reveal a previously unknown functional network of proteins (ARP3, NEB2, BRAG2) involved in age-associated cognitive dysfunction.


Quinpramine ameliorates rat experimental autoimmune neuritis and redistributes MHC class II molecules.

  • Gerd Meyer zu Hörste‎ et al.
  • PloS one‎
  • 2011‎

Activation of inflammatory cells is central to the pathogenesis of autoimmune demyelinating diseases of the peripheral nervous system. The novel chimeric compound quinpramine--generated from imipramine and quinacrine--redistributes cholesterol rich membrane domains to intracellular compartments. We studied the immunological and clinical effects of quinpramine in myelin homogenate induced Lewis rat experimental autoimmune neuritis (EAN), a model system for acute human inflammatory neuropathies, such as the Guillain-Barré syndrome. EAN animals develop paresis of all limbs due to autoimmune inflammation of peripheral nerves. Quinpramine treatment ameliorated clinical disease severity of EAN and infiltration of macrophages into peripheral nerves. It reduced expression of MHC class II molecules on antigen presenting cells and antigen specific T cell proliferation both in vitro and in vivo. Quinpramine exerted its anti-proliferatory effect on antigen presenting cells, but not on responder T cells. Our data suggest that quinpramine represents a candidate pharmaceutical for inflammatory neuropathies.


Aggregation of the protein TRIOBP-1 and its potential relevance to schizophrenia.

  • Nicholas J Bradshaw‎ et al.
  • PloS one‎
  • 2014‎

We have previously proposed that specific proteins may form insoluble aggregates as a response to an illness-specific proteostatic dysbalance in a subset of brains from individuals with mental illness, as is the case for other chronic brain conditions. So far, established risk factors DISC1 and dysbindin were seen to specifically aggregate in a subset of such patients, as was a novel schizophrenia-related protein, CRMP1, identified through a condition-specific epitope discovery approach. In this process, antibodies are raised against the pooled insoluble protein fractions (aggregomes) of post mortem brain samples from schizophrenia patients, followed by epitope identification and confirmation using additional techniques. Pursuing this epitope discovery paradigm further, we reveal TRIO binding protein (TRIOBP) to be a major substrate of a monoclonal antibody with a high specificity to brain aggregomes from patients with chronic mental illness. TRIOBP is a gene previously associated with deafness which encodes for several distinct protein species, each involved in actin cytoskeletal dynamics. The 3' splice variant TRIOBP-1 is found to be the antibody substrate and has a high aggregation propensity when over-expressed in neuroblastoma cells, while the major 5' splice variant, TRIOBP-4, does not. Endogenous TRIOBP-1 can also spontaneously aggregate, doing so to a greater extent in cell cultures which are post-mitotic, consistent with aggregated TRIOBP-1 being able to accumulate in the differentiated neurons of the brain. Finally, upon expression in Neuroscreen-1 cells, aggregated TRIOBP-1 affects cell morphology, indicating that TRIOBP-1 aggregates may directly affect cell development, as opposed to simply being a by-product of other processes involved in major mental illness. While further experiments in clinical samples are required to clarify their relevance to chronic mental illness in the general population, TRIOBP-1 aggregates are thus implicated for the first time as a biological element of the neuropathology of a subset of chronic mental illness.


Characterization of a single-chain variable fragment recognizing a linear epitope of aβ: a biotechnical tool for studies on Alzheimer's disease?

  • Silke Dornieden‎ et al.
  • PloS one‎
  • 2013‎

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with devastating effects. Currently, therapeutic options are limited to symptomatic treatment. For more than a decade, research focused on immunotherapy for the causal treatment of AD. However, clinical trials with active immunization using Aβ encountered severe complications, for example meningoencephalitis. Consequently, attention focused on passive immunization using antibodies. As an alternative to large immunoglobulins (IgGs), Aβ binding single-chain variable fragments (scFvs) were used for diagnostic and therapeutic research approaches. scFvs can be expressed in E. coli and may provide improved pharmacokinetic properties like increased blood-brain barrier permeability or reduced side-effects in vivo. In this study, we constructed an scFv from an Aβ binding IgG, designated IC16, which binds the N-terminal region of Aβ (Aβ(1-8)). scFv-IC16 was expressed in E. coli, purified and characterized with respect to its interaction with different Aβ species and its influence on Aβ fibril formation. We were able to show that scFv-IC16 strongly influenced the aggregation behavior of Aβ and could be applied as an Aβ detection probe for plaque staining in the brains of transgenic AD model mice. The results indicate potential for therapy and diagnosis of AD.


Lymphoblast-derived integration-free iPSC line AD-TREM2-1 from a 67year-old Alzheimer's disease patient expressing the TREM2 p.R47H variant.

  • Soraia Martins‎ et al.
  • Stem cell research‎
  • 2018‎

Human lymphoblast cells from a male diagnosed with Alzheimer's disease (AD) expressing the TREM2 p.R47H variant were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. AD-TREM2-1 was defined as pluripotent based on (i) expression of pluripotency-associated markers (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.947.


Fast but not furious: a streamlined selection method for genome-edited cells.

  • Haribaskar Ramachandran‎ et al.
  • Life science alliance‎
  • 2021‎

In the last decade, transcription activator-like effector nucleases and CRISPR-based genome engineering have revolutionized our approach to biology. Because of their high efficiency and ease of use, the development of custom knock-out and knock-in animal or cell models is now within reach for almost every laboratory. Nonetheless, the generation of genetically modified cells often requires a selection step, usually achieved by antibiotics or fluorescent markers. The choice of the selection marker is based on the available laboratory resources, such as cell types, and parameters such as time and cost should also be taken into consideration. Here, we present a new and fast strategy called magnetic-activated genome-edited cell sorting, to select genetically modified cells based on the ability to magnetically sort surface antigens (i.e., tCD19) present in Cas9-positive cells. By using magnetic-activated genome-edited cell sorting, we successfully generated and isolated genetically modified human-induced pluripotent stem cells, primary human fibroblasts, SH-SY5Y neuroblast-like cells, HaCaT and HEK 293T cells. Our strategy expands the genome editing toolbox by offering a fast, cheap, and an easy to use alternative to the available selection methods.


A stem cell based in vitro model of NAFLD enables the analysis of patient specific individual metabolic adaptations in response to a high fat diet and AdipoRon interference.

  • Nina Graffmann‎ et al.
  • Biology open‎
  • 2021‎

Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease. Its development and progression depend on genetically predisposed susceptibility of the patient towards several 'hits' that induce fat storage first and later inflammation and fibrosis. Here, we differentiated induced pluripotent stem cells (iPSCs) derived from four distinct donors with varying disease stages into hepatocyte like cells (HLCs) and determined fat storage as well as metabolic adaptations after stimulations with oleic acid. We could recapitulate the complex networks that control lipid and glucose metabolism and we identified distinct gene expression profiles related to the steatosis phenotype of the donor. In an attempt to reverse the steatotic phenotype, cells were treated with the small molecule AdipoRon, a synthetic analogue of adiponectin. Although the responses varied between cells lines, they suggest a general influence of AdipoRon on metabolism, transport, immune system, cell stress and signalling.


Generation of an induced pluripotent stem cell line (IUFi001) from a Cockayne syndrome patient carrying a mutation in the ERCC6 gene.

  • Soraia Martins‎ et al.
  • Stem cell research‎
  • 2021‎

Human fibroblasts from a Cockayne Syndrome (CS) patient carrying the compound heterozygous c.1131 A > T and c.2571C > T within ERCC Excision Repair 6 (ERCC6) were reprogramed to generate integration-free induced pluripotent stem cells (iPSCs). Characterization of IUFi001-iPSCs demonstrated that this iPSC line is free of exogenous reprogrammed genes and maintains the genomic integrity. The pluripotency of IUFi001-iPSCs was confirmed by the expression of the pluripotency-associated markers and by embryoid body-based differentiation into cell types representative of the three germ layers. The generated iPSC line provides a powerful tool to dissect the molecular mechanisms underlying CS caused by mutations within ERCC6.


The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2+ Urine Derived Renal Progenitor Cells.

  • Md Shaifur Rahman‎ et al.
  • Scientific reports‎
  • 2020‎

Human urine is a non-invasive source of renal stem cells with regeneration potential. Urine-derived renal progenitor cells were isolated from 10 individuals of both genders and distinct ages. These renal progenitors express pluripotency-associated proteins- TRA-1-60, TRA-1-81, SSEA4, C-KIT and CD133, as well as the renal stem cell markers -SIX2, CITED1, WT1, CD24 and CD106. The transcriptomes of all SIX2+ renal progenitors clustered together, and distinct from the human kidney biopsy-derived epithelial proximal cells (hREPCs). Stimulation of the urine-derived renal progenitor cells (UdRPCs) with the GSK3β-inhibitor (CHIR99021) induced differentiation. Transcriptome and KEGG pathway analysis revealed upregulation of WNT-associated genes- AXIN2, JUN and NKD1. Protein interaction network identified JUN- a downstream target of the WNT pathway in association with STAT3, ATF2 and MAPK1 as a putative negative regulator of self-renewal. Furthermore, like pluripotent stem cells, self-renewal is maintained by FGF2-driven TGFβ-SMAD2/3 pathway. The urine-derived renal progenitor cells and the data presented should lay the foundation for studying nephrogenesis in human.


TRIOBP-1 Protein Aggregation Exists in Both Major Depressive Disorder and Schizophrenia, and Can Occur through Two Distinct Regions of the Protein.

  • Beti Zaharija‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The presence of proteinopathy, the accumulation of specific proteins as aggregates in neurons, is an emerging aspect of the pathology of schizophrenia and other major mental illnesses. Among the initial proteins implicated in forming such aggregates in these conditions is Trio and F-actin Binding Protein isoform 1 (TRIOBP-1), a ubiquitously expressed protein involved in the stabilization of the actin cytoskeleton. Here we investigate the insolubility of TRIOBP-1, as an indicator of aggregation, in brain samples from 25 schizophrenia patients, 25 major depressive disorder patients and 50 control individuals (anterior cingulate cortex, BA23). Strikingly, insoluble TRIOBP-1 is considerably more prevalent in both of these conditions than in controls, further implicating TRIOBP-1 aggregation in schizophrenia and indicating a role in major depressive disorder. These results were only seen using a high stringency insolubility assay (previously used to study DISC1 and other proteins), but not a lower stringency assay that would be expected to also detect functional, actin-bound TRIOBP-1. Previously, we have also determined that a region of 25 amino acids in the center of this protein is critical for its ability to form aggregates. Here we attempt to refine this further, through the expression of various truncated mutant TRIOBP-1 vectors in neuroblastoma cells and examining their aggregation. In this way, it was possible to narrow down the aggregation-critical region of TRIOBP-1 to just 8 amino acids (333-340 of the 652 amino acid-long TRIOBP-1). Surprisingly our results suggested that a second section of TRIOBP-1 is also capable of independently inducing aggregation: the optionally expressed 59 amino acids at the extreme N-terminus of the protein. As a result, the 597 amino acid long version of TRIOBP-1 (also referred to as "Tara" or "TAP68") has reduced potential to form aggregates. The presence of insoluble TRIOBP-1 in brain samples from patients, combined with insight into the mechanism of aggregation of TRIOBP-1 and generation of an aggregation-resistant mutant TRIOBP-1 that lacks both these regions, will be of significant use in further investigating the mechanism and consequences of TRIOBP-1 aggregation in major mental illness.


Matrix Metalloproteinase 14 Mediates APP Proteolysis and Lysosomal Alterations Induced by Oxidative Stress in Human Neuronal Cells.

  • Patricia Llorente‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2020‎

The alteration of amyloid precursor protein (APP) proteolysis is a hallmark of Alzheimer's disease (AD). Recent studies have described noncanonical pathways of APP processing that seem partly executed by lysosomal enzymes. Our laboratory's in vitro human SK-N-MC model has shown that oxidative stress (OS) alters the lysosomal degradation pathway and the processing/metabolism of APP. The present study identifies the lysosomal protein matrix metalloproteinase 14 (MMP14) as a protease involved in the APP noncanonical processing. Previous expression analyses of the above cells showed MMP14 to be overexpressed under OS. In the present work, its role in changes in OS-induced APP proteolysis and lysosomal load was examined. The results show that MMP14 mediates the accumulation of an ≈85 kDa N-terminal APP fragment and increases the lysosome load induced by OS. These results were validated in neurons and neural progenitor cells generated from the induced pluripotent stem cells of patients with sporadic AD, reinforcing the idea that MMP14 may offer a therapeutic target in this disease.


50-kHz ultrasonic vocalizations do not signal social anhedonia in transgenic DISC1 rats.

  • Mohammad Seidisarouei‎ et al.
  • Brain and behavior‎
  • 2023‎

Patients diagnosed with neuropsychiatric disorders, such as autism and schizophrenia, suffer from disorganized speech. The disrupted-in-schizophrenia 1 (DISC1) protein pathway is considered a risk factor for the development of several psychiatric disorders and plays an important role in the dysregulation of dopamine (DA), which in turn plays an important role in the regulation of ultrasonic vocalizations (USVs) in rats. Moreover, the DISC1 protein pathway has been identified as a cause of social anhedonia, that is, a decrease in the drive for social interactions. USVs transmit specific affective information to other rats, with 50-kHz calls indicating a positive affective state in rats. Dysregulation of the dopaminergic system impacts the qualitative and quantitative features of USVs, such as duration, peak frequency, and the call rate. In this study, we thus used a well-established transgenic DISC1 (tgDISC1) rat line to investigate whether the neural (decreased DA levels in the dorsal striatum, amygdala, and hippocampus (HPC)) and behavioral (social anhedonia) features of tgDISC1 rats could be manifested through the modulation of their 50-kHz USVs. Analyses of three features (call rate, duration, and peak frequency) of all 50-kHz revealed no significant differences between groups, suggesting decreased DA levels in the dorsal striatum and amygdala, and HPC may affect social interaction but leave 50-kHz USV production intact.


Revisiting rodent models: Octodon degus as Alzheimer's disease model?

  • Johannes Steffen‎ et al.
  • Acta neuropathologica communications‎
  • 2016‎

Alzheimer's disease primarily occurs as sporadic disease and is accompanied with vast socio-economic problems. The mandatory basic research relies on robust and reliable disease models to overcome increasing incidence and emerging social challenges. Rodent models are most efficient, versatile, and predominantly used in research. However, only highly artificial and mostly genetically modified models are available. As these 'engineered' models reproduce only isolated features, researchers demand more suitable models of sporadic neurodegenerative diseases. One very promising animal model was the South American rodent Octodon degus, which was repeatedly described as natural 'sporadic Alzheimer's disease model' with 'Alzheimer's disease-like neuropathology'. To unveil advantages over the 'artificial' mouse models, we re-evaluated the age-dependent, neurohistological changes in young and aged Octodon degus (1 to 5-years-old) bred in a wild-type colony in Germany. In our hands, extensive neuropathological analyses of young and aged animals revealed normal age-related cortical changes without obvious signs for extensive degeneration as seen in patients with dementia. Neither significant neuronal loss nor enhanced microglial activation were observed in aged animals. Silver impregnation methods, conventional, and immunohistological stains as well as biochemical fractionations revealed neither amyloid accumulation nor tangle formation. Phosphoepitope-specific antibodies against tau species displayed similar intraneuronal reactivity in both, young and aged Octodon degus.In contrast to previous results, our study suggests that Octodon degus born and bred in captivity do not inevitably develop cortical amyloidosis, tangle formation or neuronal loss as seen in Alzheimer's disease patients or transgenic disease models.


DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites.

  • Rosalind Norkett‎ et al.
  • The Journal of biological chemistry‎
  • 2016‎

The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development.


Lymphoblast-derived integration-free ISRM-CON9 iPS cell line from a 75year old female.

  • Soraia Martins‎ et al.
  • Stem cell research‎
  • 2018‎

Human lymphoblast cells were used to generate integration-free induced pluripotent stem cells (iPSCs) employing episomal-based plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The derived iPSCs were defined as pluripotent based on (i) expression of pluripotency-associated markers, (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptomes of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.95.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: