Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Inhibition of autophagy enhances the antitumour activity of tigecycline in multiple myeloma.

  • Ruye Ma‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Accumulating evidence shows that tigecycline, a first-in-class glycylcycline, has potential antitumour properties. Here, we found that tigecycline dramatically inhibited the proliferation of multiple myeloma (MM) cell lines RPMI-8226, NCI-H929 and U266 in a dose and time-dependent manner. Meanwhile, tigecycline also potently impaired the colony formation of these three cell lines. Mechanism analysis found that tigecycline led to cell cycle arrest at G0/G1 with down-regulation of p21, CDK2 and cyclin D1, rather than induced apoptosis, in MM cells. Importantly, we found that tigecycline induced autophagy and an autophagy inhibitor bafilomycin A1 further amplified the tigecycline-induced cytotoxicity, suggesting that autophagy plays a cytoprotective role in tigecycline-treated MM cells. Mechanisms modulating autophagy found that tigecycline enhanced the phosphorylation of AMPK, but did not decrease the phosphorylation of Akt, to inhibit the phosphorylation of mTOR and its two downstream effectors p70S6K1 and 4E-BP1. Tigecycline effectively inhibited tumour growth in the xenograft tumour model of RPMI-8226 cells. Autophagy also occurred in tigecycline-treated tumour xenograft, and autophagy inhibitor chloroquine and tigecycline had a synergistic effect against MM cells in vivo. Thus, our results suggest that tigecycline may be a promising candidate in the treatment of MM.


Prognostic significance of the red blood cell distribution width that maintain at high level following completion of first line therapy in mutiple myeloma patients.

  • Yongyong Ma‎ et al.
  • Oncotarget‎
  • 2018‎

To investigate the prognostic value of the red blood cell distribution width(RDW) recovery from low levels at diagnosis after completion of first line therapy in mutiple myeloma (MM)patients,we enrolled 78 consecutive patients with MM and followed up from 2005 to 2016 in our hospital. The RDW was measured following completion of first-line therapy.The log-rank test, univariate analysis, and Cox regression analysis were used to evaluate the relationship between RDW and survival. We found that patients with an RDW ≥ 15.5% at diagnosis, as well as at completion of first-line therapy, had significantly lower progression-free survival (PFS) and overall survival(OS) rates than those with an RDW < 15.5%(P < 0.05).Patients with RDW that maintained more than 15.5% upon completion of therapy showed a shorter OS (P < 0.05) and PFS (P < 0.05) compared with patients with an RDW that decreased to a lower level.The multivariate analysis showed that RDW ≥ 15.5% after the completion of first-line therapy were an independent prognostic marker of poorer OS (P = 0.044) and PFS (P = 0.034). Therefore,we demonstrated that RDW at diagnosis, as well as at completion of first-line therapy is an independent predictor for mutiple myeloma patients.RDW maintained at high level, irrespective of whether RDW decreased to the cutoff value predicted an unfavorable prognosis in patients with MM.


Musashi-2 Silencing Exerts Potent Activity against Acute Myeloid Leukemia and Enhances Chemosensitivity to Daunorubicin.

  • Yixiang Han‎ et al.
  • PloS one‎
  • 2015‎

RNA-binding protein Musashi-2 (Msi2) is known to play a critical role in leukemogenesis and contributes to poor clinical prognosis in acute myeloid leukemia (AML). However, the effect of Msi2 silencing on treatment for AML still remains poorly understood. In this study, we used lentivirus-mediated RNA interference targeting Msi2 to investigate the resulting changes in cellular processes and the underlying mechanisms in AML cell lines as well as primary AML cells isolated from AML patients. We found that Msi2 was highly expressed in AML cells, and its depletion inhibited Ki-67 expression and resulted in decreased in vitro and in vivo proliferation. Msi2 silencing induced cell cycle arrest in G0/G1 phase, with decreased Cyclin D1 and increased p21 expression. Msi2 silencing induced apoptosis through down-regulation of Bcl-2 expression and up-regulation of Bax expression. Suppression of Akt, Erk1/2 and p38 phosphorylation also contributed to apoptosis mediated by Msi2 silencing. Finally, Msi2 silencing in AML cells also enhanced their chemosensitivity to daunorubicin. Conclusively, our data suggest that Msi2 is a promising target for gene therapy to optimize conventional chemotherapeutics in AML treatment.


Prognostic significance of the red blood cell distribution width in diffuse large B-cell lymphoma patients.

  • Shujuan Zhou‎ et al.
  • Oncotarget‎
  • 2017‎

This study examined the prognostic value of the baseline red blood cell distribution width (RDW) in diffuse large B cell lymphoma (DLBCL) patients. The associations between RDW and clinical characteristics were assessed in 161 DLBCL patients from 2005 to 2016. The log-rank test, univariate analysis, and Cox regression analysis were used to evaluate the relationship between RDW and survival. A RDW of 14.1% was considered to be the optimal cut-off value for predicting prognosis. A high RDW was associated with more frequent B symptoms (P=0.001), a higher International Prognostic Index score (P=0.032), more extranodal sites of disease (P=0.035), and significantly lower Eastern Cooperative Oncology Group performance status (P=0.031). The log-rank test demonstrated that patients with a high RDW had a shorter overall survival (OS) (2-year OS rate, 53.6% vs. 83.6%, P<0.001) and progression-free survival (PFS) (2-year PFS rate, 44.7% vs. 81.8%, P<0.001). The multivariate analysis demonstrated that RDW ≥14.1% was an independent predictor of OS (odds ratio [OR] = 0.345, P<0.001) and PFS (OR = 0.393, P=0.001). We demonstrated that a high RDW predicted an unfavorable prognosis in patients with DLBCL.


Casein kinase 1α inhibits p53 downstream of MDM2‑mediated autophagy and apoptosis in acute myeloid leukemia.

  • Wanling Xu‎ et al.
  • Oncology reports‎
  • 2020‎

Enhancement of autophagy serves as a promising therapeutic strategy for cancer, including acute myeloid leukemia (AML). Casein kinase 1α (CK1α), encoded by CSNK1A1, regulates Wnt/β‑catenin, p53 and other key signaling pathways, and is critically involved in tumor progression. However, the relationship and mechanism of CK1α with autophagy in AML still remain unclear. In the present study, it was found that AML patients had higher expression of CSNK1A1 mRNA than healthy donors. Furthermore, we analyzed 163 cases of AML patients in the LAML database of TCGA and found that AML patients with high CSNK1A1 had shorter overall survival than those with low or medium CSNK1A1 expression. Furthermore, we demonstrated that CK1α was a negative regulator of autophagy and apoptosis. Pharmacologic inhibition of CK1α using D4476 or CK1α knockdown via lentivirus‑mediated shRNA suppressed proliferation and the clone formation by enhancing autophagic flux and apoptosis in AML cell lines as well as in patient blast cells. Intriguingly, D4476‑induced cell death was aggravated in combination with an autophagy inhibitor, Spautin‑1, suggesting that autophagy may be a pro‑survival signaling. CK1α interacted with murine double minute 2 (MDM2) and p53, and CK1α inhibitor D4476 significantly upregulated p53 and phosphorylated 5' AMP‑activated protein kinase (AMPK), and substantially inhibited the phosphorylation of mammalian target of rapamycin (mTOR). Our findings indicate that CK1α promotes AML by suppressing p53 downstream of MDM2‑mediated autophagy and apoptosis, suggesting that targeting CK1α provides a therapeutic opportunity to treat AML.


Increase of CD3+CD7- T cells in bone marrow predicts invasion in patients with T-cell non-Hodgkin's lymphoma.

  • Ziyang Huang‎ et al.
  • Translational cancer research‎
  • 2022‎

The T-cell non-Hodgkin's lymphoma (T-NHL) patients with bone marrow (BM) invasion have a poor prognosis. Although BM biopsy is still a confirmed diagnosis method, the low sensitivity restricts its use to detect the minimal BM invasion. It is of great clinical significance to establish a rapid and highly sensitive method to evaluate BM invasion.


Combined inhibition of XIAP and autophagy induces apoptosis and differentiation in acute myeloid leukaemia.

  • Ziyang Huang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2023‎

Perturbations in autophagy, apoptosis and differentiation have greatly affected the progression and therapy of acute myeloid leukaemia (AML). The role of X-linked inhibitor of apoptosis (XIAP)-related autophagy remains unclear in AML therapeutics. Here, we found that XIAP was highly expressed and associated with poor overall survival in patients with AML. Furthermore, pharmacologic inhibition of XIAP using birinapant or XIAP knockdown via siRNA impaired the proliferation and clonogenic capacity by inducing autophagy and apoptosis in AML cells. Intriguingly, birinapant-induced cell death was aggravated in combination with ATG5 siRNA or an autophagy inhibitor spautin-1, suggesting that autophagy may be a pro-survival signalling. Spautin-1 further enhanced the ROS level and myeloid differentiation in THP-1 cells treated with birinapant. The mechanism analysis showed that XIAP interacted with MDM2 and p53, and XIAP inhibition notably downregulated p53, substantially increased the AMPKα1 phosphorylation and downregulated the mTOR phosphorylation. Combined treatment using birinapant and chloroquine significantly retarded AML progression in both a subcutaneous xenograft model injected with HEL cells and an orthotopic xenograft model injected intravenously with C1498 cells. Collectively, our data suggested that XIAP inhibition can induce autophagy, apoptosis and differentiation, and combined inhibition of XIAP and autophagy may be a promising therapeutic strategy for AML.


Identification and validation of a novel cuproptosis-related gene signature in multiple myeloma.

  • Bingxin Zhang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2023‎

Background: Cuproptosis is a newly identified unique copper-triggered modality of mitochondrial cell death, distinct from known death mechanisms such as necroptosis, pyroptosis, and ferroptosis. Multiple myeloma (MM) is a hematologic neoplasm characterized by the malignant proliferation of plasma cells. In the development of MM, almost all patients undergo a relatively benign course from monoclonal gammopathy of undetermined significance (MGUS) to smoldering myeloma (SMM), which further progresses to active myeloma. However, the prognostic value of cuproptosis in MM remains unknown. Method: In this study, we systematically investigated the genetic variants, expression patterns, and prognostic value of cuproptosis-related genes (CRGs) in MM. CRG scores derived from the prognostic model were used to perform the risk stratification of MM patients. We then explored their differences in clinical characteristics and immune patterns and assessed their value in prognosis prediction and treatment response. Nomograms were also developed to improve predictive accuracy and clinical applicability. Finally, we collected MM cell lines and patient samples to validate marker gene expression by quantitative real-time PCR (qRT-PCR). Results: The evolution from MGUS and SMM to MM was also accompanied by differences in the CRG expression profile. Then, a well-performing cuproptosis-related risk model was developed to predict prognosis in MM and was validated in two external cohorts. The high-risk group exhibited higher clinical risk indicators. Cox regression analyses showed that the model was an independent prognostic predictor in MM. Patients in the high-risk group had significantly lower survival rates than those in the low-risk group (p < 0.001). Meanwhile, CRG scores were significantly correlated with immune infiltration, stemness index and immunotherapy sensitivity. We further revealed the close association between CRG scores and mitochondrial metabolism. Subsequently, the prediction nomogram showed good predictive power and calibration. Finally, the prognostic CRGs were further validated by qRT-PCR in vitro. Conclusion: CRGs were closely related to the immune pattern and self-renewal biology of cancer cells in MM. This prognostic model provided a new perspective for the risk stratification and treatment response prediction of MM patients.


Acute Myeloid Leukemia Cells Express ICOS Ligand to Promote the Expansion of Regulatory T Cells.

  • Yixiang Han‎ et al.
  • Frontiers in immunology‎
  • 2018‎

CD4+CD25+Foxp3+ regulatory T cells (Tregs) accumulate in bone marrow microenvironment in acute myeloid leukemia (AML). However, little is known about how the tumor environment including tumor cells themselves affects this process. Here we demonstrated that AML cells expressed inducible T-cell costimulator ligand (ICOSL) that can provide costimulation through ICOS for the conversion and expansion of Tregs sustaining high Foxp3 and CD25 expression as well as a suppressive function. TNF-a stimulation up-regulated the expression of ICOSL. Furthermore, both the conversion and expansion of CD4+CD25+Foxp3+ T cells and CD4+ICOS+Foxp3+ T cells were induced by co-culture with AML cells overexpressed ICOSL. CD4+CD25+ICOS+ T cells possessed stronger ability to secrete IL-10 than CD4+CD25+ICOS- T cells. The mechanism by which IL-10 promoted the proliferation of AML cells was dependent on the activation of the Akt, Erk1/2, p38, and Stat3 signaling pathways. Blockade of ICOS signaling using anti-ICOSL antibody impaired the generation of Tregs and retarded the progression of an AML mice model injected with C1498 cells. The expression of ICOSL of patient AML cells and ICOS+ Tregs were found to be predictors for overall survival and disease-free survival in patients with AML, with ICOS+ Treg cell subset being a stronger predictor than total Tregs. These results suggest that ICOSL expression by AML cells may directly drive Treg expansion as a mechanism of immune evasion and ICOS+ Treg cell frequency is a better prognostic predictor in patients with AML.


PD-L1 Is Expressed and Promotes the Expansion of Regulatory T Cells in Acute Myeloid Leukemia.

  • Yuqing Dong‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Intratumoral accumulation of CD4+CD25+Foxp3+ regulatory T (Treg) cells occurs in acute myeloid leukemia (AML), but little is known about the role of tumor cells themselves in this process. Here, we showed that an immune checkpoint PD-L1 expressed by AML cells promoted the conversion and expansion of Treg cells sustaining high expression of Foxp3 and PD-1 as well as a suppressive function. Furthermore, an AML cell line HEL overexpressed PD-L1 promoted the conversion and expansion of Treg cells and CD4+PD-1+Foxp3+ T (PD-1+Treg) cells from the conventional CD4+ T cells. CD4+CD25highPD-1+ T cells secreted more IL-10 production than CD4+CD25highPD-1- T cells. IL-35, another cytokine secreted by Treg cells, promoted the proliferation of HL-60 cells and enhanced chemoresistance to cytarabine. Blockade of PD-1 signaling using anti-PD-L1 antibody dramatically impaired the generation of Treg cells and sharply retarded the progression of a murine AML model injected with C1498 cells. The frequency of intratumoral PD-1+ Treg cells was capable of predicting patient survival in patients with AML. In conclusion, our data suggest that PD-L1 expression by AML cells may directly drive Treg cell expansion as a mechanism of immune evasion and the frequency of PD-1+ Treg cells is a potential prognostic predictor in patients with AML.


Comprehensive analysis of ferroptosis-related genes in immune infiltration and prognosis in multiple myeloma.

  • Quanqiang Wang‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

Background: One particular type of cellular death that is known as ferroptosis is caused by the excessive lipid peroxidation. It is a regulated form of cell death that can affect the response of the tumor cells. Currently, it is not known if the presence of this condition can affect the prognosis of patients with multiple myeloma (MM). Methods: In this study, we studied the expression differences and prognostic value of ferroptosis-related genes (FRGs) in MM, and established a ferroptosis risk scoring model. In order to improve the prediction accuracy and clinical applicability, a nomogram was also established. Through gene enrichment analysis, pathways closely related to high-risk groups were identified. We then explored the differences in risk stratification in drug sensitivity and immune patterns, and evaluated their value in prognostic prediction and treatment response. Lastly, we gathered MM cell lines and samples from patients to confirm the expression of marker FRGs using quantitative real-time PCR (qRT-PCR). Results: The ability to predict the survival of MM patients is a challenging issue. Through the use of a risk model derived from ferroptosis, we were able to develop a more accurate prediction of the disease's prognosis. They were then validated by a statistical analysis, which showed that the model is an independent factor in the prognosis of MM. Patients of high ferroptosis risk scores had a much worse chance of survival than those in the low-risk groups. The calibration and power of the nomogram were also strong. We noted that the link between the ferroptosis risk score and the clinical treatment was suggested by the FRG's significant correlation with the immune checkpoint genes and the medication sensitivity. We validated the predictive model using qRT-PCR. Conclusion: We demonstrated the association between FRGs and MM, and developed a new risk model for prognosis in MM patients. Our study sheds light on the potential clinical relevance of ferroptosis in MM and highlights its potential as a therapeutic target for patients with this disease.


Matrine induces Akt/mTOR signalling inhibition-mediated autophagy and apoptosis in acute myeloid leukaemia cells.

  • Junqing Wu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2017‎

Pharmacological modulation of autophagy has been referred to as a promising therapeutic strategy for cancer. Matrine, a main alkaloid extracted from Sophora flavescens Ait, has antitumour activity against acute myelocytic leukaemia (AML). Whether autophagy is involved in antileukaemia activity of matrine remains unobvious. In this study, we demonstrated that matrine inhibited cell viability and colony formation via inducing apoptosis and autophagy in AML cell lines HL-60, THP-1 and C1498 as well as primary AML cells. Matrine promoted caspase-3 and PARP cleavage dose-dependently. Matrine up-regulated the level of LC3-II and down-regulated the level of SQSTM1/p62 in a dose-dependent way, indicating that autophagy should be implicated in anti-AML effect of matrine. Furthermore, the autophagy inhibitor bafilomycin A1 relieved the cytotoxicity of matrine by blocking the autophagic flux, while the autophagy promoter rapamycin enhanced the cytotoxicity of matrine. Additionally, matrine inhibited the phosphorylation of Akt, mTOR and their downstream substrates p70S6K and 4EBP1, which led to the occurrence of autophagy. In vivo study demonstrated that autophagy was involved in antileukaemia effect of matrine in C57BL/6 mice bearing murine AML cell line C1498, and the survival curves showed that mice did benefit from treatment with matrine. Collectively, our findings indicate that matrine exerts antitumour effect through apoptosis and autophagy, and the latter one might be a potential therapeutic strategy for AML.


Benzene induces haematotoxicity by promoting deacetylation and autophagy.

  • Shanhu Qian‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Chronic exposure to benzene is known to be associated with haematotoxicity and the development of aplastic anaemia and leukaemia. However, the mechanism underlying benzene-induced haematotoxicity, especially at low concentrations of chronic benzene exposure has not been well-elucidated. Here, we found that increased autophagy and decreased acetylation occurred in bone marrow mononuclear cells (BMMNCs) isolated from patients with chronic benzene exposure. We further showed in vitro that benzene metabolite, hydroquinone (HQ) could directly induce autophagy without apoptosis in BMMNCs and CD34+ cells. This was mediated by reduction in acetylation of autophagy components through inhibiting the activity of acetyltransferase, p300. Furthermore, elevation of p300 expression by Momordica Antiviral Protein 30 Kd (MAP30) or chloroquine reduced HQ-induced autophagy. We further demonstrated that in vivo, MAP30 and chloroquine reversed benzene-induced autophagy and haematotoxicity in a mouse model. Taken together, these findings highlight increased autophagy as a novel mechanism for benzene-induced haematotoxicity and provide potential strategies to reverse this process for therapeutic benefits.


MicroRNA-143 acts as a tumor suppressor through Musashi-2/DLL1/Notch1 and Musashi-2/Snail1/MMPs axes in acute myeloid leukemia.

  • Fanfan Li‎ et al.
  • Journal of translational medicine‎
  • 2023‎

The previous studies have revealed that abnormal RNA-binding protein Musashi-2 (MSI2) expression is associated with cancer progression through post-transcriptional mechanisms, however mechanistic details of this regulation in acute myeloid leukemia (AML) still remain unclear. Our study aimed to explore the relationship between microRNA-143 (miR-143) and MSI2 and to clarify their clinical significance, biological function and mechanism.


A novel glycolysis-related gene signature for predicting the prognosis of multiple myeloma.

  • Bingxin Zhang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2023‎

Background: Metabolic reprogramming is an important hallmark of cancer. Glycolysis provides the conditions on which multiple myeloma (MM) thrives. Due to MM's great heterogeneity and incurability, risk assessment and treatment choices are still difficult. Method: We constructed a glycolysis-related prognostic model by Least absolute shrinkage and selection operator (LASSO) Cox regression analysis. It was validated in two independent external cohorts, cell lines, and our clinical specimens. The model was also explored for its biological properties, immune microenvironment, and therapeutic response including immunotherapy. Finally, multiple metrics were combined to construct a nomogram to assist in personalized prediction of survival outcomes. Results: A wide range of variants and heterogeneous expression profiles of glycolysis-related genes were observed in MM. The prognostic model behaved well in differentiating between populations with various prognoses and proved to be an independent prognostic factor. This prognostic signature closely coordinated with multiple malignant features such as high-risk clinical features, immune dysfunction, stem cell-like features, cancer-related pathways, which was associated with the survival outcomes of MM. In terms of treatment, the high-risk group showed resistance to conventional drugs such as bortezomib, doxorubicin and immunotherapy. The joint scores generated by the nomogram showed higher clinical benefit than other clinical indicators. The in vitro experiments with cell lines and clinical subjects further provided convincing evidence for our study. Conclusion: We developed and validated the utility of the MM glycolysis-related prognostic model, which provides a new direction for prognosis assessment, treatment options for MM patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: