Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Identification of synaptic pattern of NMDA receptor subunits upon direction-selective retinal ganglion cells in developing and adult mouse retina.

  • Jun-Seok Lee‎ et al.
  • Acta histochemica‎
  • 2017‎

Direction selectivity of the retina is a unique mechanism and critical function of eyes for surviving. Direction-selective retinal ganglion cells (DS RGCs) strongly respond to preferred directional stimuli, but rarely respond to the opposite or null directional stimuli. These DS RGCs are sensitive to glutamate, which is secreted from bipolar cells. Using immunocytochemistry, we studied with the distributions of N-methyl-d-aspartate (NMDA) receptor subunits on the dendrites of DS RGCs in the developing and adult mouse retina. DS RGCs were injected with Lucifer yellow for identification of dendritic morphology. The triple-labeled images of dendrites, kinesin II, and NMDA receptor subunits were visualized using confocal microscopy and were reconstructed from high-resolution confocal images. Although our results revealed that the synaptic pattern of NMDA receptor subunits on dendrites of DS RGCs was not asymmetric in developing and adult mouse retina, they showed the anatomical connectivity of NMDA glutamatergic synapses onto DS RGCs and the developmental formation of the direction selectivity in the mouse retina. Through the comprehensive interpretation of the direction-selective neural circuit, this study, therefore, implies that the direction selectivity may be generated by the asymmetry of the excitatory glutamatergic inputs and the inhibitory inputs onto DS RGCs.


Photoactivatable metabolic warheads enable precise and safe ablation of target cells in vivo.

  • Sam Benson‎ et al.
  • Nature communications‎
  • 2021‎

Photoactivatable molecules enable ablation of malignant cells under the control of light, yet current agents can be ineffective at early stages of disease when target cells are similar to healthy surrounding tissues. In this work, we describe a chemical platform based on amino-substituted benzoselenadiazoles to build photoactivatable probes that mimic native metabolites as indicators of disease onset and progression. Through a series of synthetic derivatives, we have identified the key chemical groups in the benzoselenadiazole scaffold responsible for its photodynamic activity, and subsequently designed photosensitive metabolic warheads to target cells associated with various diseases, including bacterial infections and cancer. We demonstrate that versatile benzoselenadiazole metabolites can selectively kill pathogenic cells - but not healthy cells - with high precision after exposure to non-toxic visible light, reducing any potential side effects in vivo. This chemical platform provides powerful tools to exploit cellular metabolic signatures for safer therapeutic and surgical approaches.


Expression of Nicotinic Acetylcholine Receptor α4 and β2 Subunits on Direction-Selective Retinal Ganglion Cells in the Rabbit.

  • Jun-Seok Lee‎ et al.
  • Acta histochemica et cytochemica‎
  • 2017‎

The direction selectivity of the retina is a distinct mechanism that is critical function of eyes for survival. The direction-selective retinal ganglion cells (DS RGCs) strongly respond to a preferred direction, but rarely respond to opposite direction or null directional visual stimuli. The DS RGCs are sensitive to acetylcholine, which is secreted from starburst amacrine cells (SACs) to the DS RGCs. Here, we investigated the existence and distribution of the nicotinic acetylcholine receptor (nAChR) α4 and β2 subunits on the dendritic arbors of the DS RGCs in adult rabbit retina using immunocytochemistry. The DS RGCs were injected with Lucifer yellow to identify their dendritic morphology. The double-labeled images of dendrites and nAChR subunits were visualized for reconstruction using high-resolution confocal microscopy. Although our results revealed that the distributional pattern of the nAChR subunits on the dendritic arbors of the DS RGCs was not asymmetric in the adult rabbit retina, the distribution of nAChR α4 and β2 subunits and molecular profiles of cholinergic inputs to DS RGCs in adult rabbit retina provide anatomical evidence for direction selectivity.


Levosimendan inhibits disulfide tau oligomerization and ameliorates tau pathology in TauP301L-BiFC mice.

  • Sungsu Lim‎ et al.
  • Experimental & molecular medicine‎
  • 2023‎

Tau oligomers play critical roles in tau pathology and are responsible for neuronal cell death and transmitting the disease in the brain. Accordingly, preventing tau oligomerization has become an important therapeutic strategy to treat tauopathies, including Alzheimer's disease. However, progress has been slow because detecting tau oligomers in the cellular context is difficult. Working toward tau-targeted drug discovery, our group has developed a tau-BiFC platform to monitor and quantify tau oligomerization. By using the tau-BiFC platform, we screened libraries with FDA-approved and passed phase I drugs and identified levosimendan as a potent anti-tau agent that inhibits tau oligomerization. 14C-isotope labeling of levosimendan revealed that levosimendan covalently bound to tau cysteines, directly inhibiting disulfide-linked tau oligomerization. In addition, levosimendan disassembles tau oligomers into monomers, rescuing neurons from aggregation states. In comparison, the well-known anti-tau agents methylene blue and LMTM failed to protect neurons from tau-mediated toxicity, generating high-molecular-weight tau oligomers. Levosimendan displayed robust potency against tau oligomerization and rescued cognitive declines induced by tauopathy in the TauP301L-BiFC mouse model. Our data present the potential of levosimendan as a disease-modifying drug for tauopathies.


Identification of disulfide cross-linked tau dimer responsible for tau propagation.

  • Dohee Kim‎ et al.
  • Scientific reports‎
  • 2015‎

Recent evidence suggests that tau aggregates are not only neurotoxic, but also propagate in neurons acting as a seed for native tau aggregation. Prion-like tau transmission is now considered as an important pathogenic mechanism driving the progression of tau pathology in the brain. However, prion-like tau species have not been clearly characterized. To identify infectious tau conformers, here we prepared diverse tau aggregates and evaluated the effect on inducing intracellular tau-aggregation. Among tested, tau dimer containing P301L-mutation is identified as the most infectious form to induce tau pathology. Biochemical analysis reveals that P301L-tau dimer is covalently cross-linked with a disulfide bond. The relatively small and covalently cross-linked tau dimer induced tau pathology efficiently in primary neurons and also in tau-transgenic mice. So far, the importance of tau disulfide cross-linking has been overlooked in the study of tau pathology. Here our results suggested that tau disulfide cross-linking might play critical role in tau propagation by producing structurally stable and small tau conformers.


Pan-HDAC Inhibitors Promote Tau Aggregation by Increasing the Level of Acetylated Tau.

  • Hyeanjeong Jeong‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Epigenetic remodeling via histone acetylation has become a popular therapeutic strategy to treat Alzheimer's disease (AD). In particular, histone deacetylase (HDAC) inhibitors including M344 and SAHA have been elucidated to be new drug candidates for AD, improving cognitive abilities impaired in AD mouse models. Although emerged as a promising target for AD, most of the HDAC inhibitors are poorly selective and could cause unwanted side effects. Here we show that tau is one of the cytosolic substrates of HDAC and the treatment of HDAC inhibitors such as Scriptaid, M344, BML281, and SAHA could increase the level of acetylated tau, resulting in the activation of tau pathology.


Comparison of Minimally Invasive Versus Open Transforaminal Interbody Lumbar Fusion.

  • Chi Heon Kim‎ et al.
  • Global spine journal‎
  • 2020‎

Narrative review.


Long-Segmental Posterior Fusion Combined With Vertebroplasty and Wiring: Alternative Surgical Technique for Kummell's Disease With Neurologic Deficits-A Retrospective Case Series.

  • Hyung-Youl Park‎ et al.
  • Geriatric orthopaedic surgery & rehabilitation‎
  • 2021‎

Various surgical methods have been reported for Kummell's disease with neurologic deficits. The aim of this study was to introduce long-segmental posterior fusion (LPF) combined with vertebroplasty (VP) and wiring as an alternative surgical technique.


2-Anilinoquinoline based arylamides as broad spectrum anticancer agents with B-RAFV600E/C-RAF kinase inhibitory effects: Design, synthesis, in vitro cell-based and oncogenic kinase assessments.

  • Ashraf K El-Damasy‎ et al.
  • European journal of medicinal chemistry‎
  • 2020‎

Prompted by the urgent demand for identification of new anticancer agents with improved potency and efficacy, a new series of arylamides incorporating the privileged 2-anilinoquinoline scaffold has been designed, synthesized, and biologically assessed. Aiming at extensive evaluation of the target compounds' potency and spectrum, a panel of 60 clinically important cancer cell lines representing nine cancer types has been used. Compounds 9a and 9c, with piperazine substituted phenyl ring, emerged as the most active members surpassing the anticancer potencies of the FDA-approved drug imatinib. They elicited sub-micromolar or one-digit micromolar GI50 values over the majority of tested cancer cells including multidrug resistant (MDR) cells like colon HCT-15, renal TK-10 and UO-31, and ovarian NCI/ADR-RES. In vitro mechanistic study showed that compounds 9a and 9c could trigger morphological changes, apoptosis and cell cycle arrest in HCT-116 colon cancer cells. Besides, compound 9c altered microtubule polymerization pattern in a similar fashion to paclitaxel. Kinase screening of 9c disclosed its inhibitory activity over B-RAFV600E and C-RAF kinases with IC50 values of 0.888 μM and 0.229 μM, respectively. Taken together, the current report presents compounds 9a and 9c as promising broad-spectrum potent anticancer candidates, which could be considered for further development of new anticancer drugs.


Mechanistic elements and critical factors of cellular reprogramming revealed by stepwise global gene expression analyses.

  • Sung-Jin Park‎ et al.
  • Stem cell research‎
  • 2014‎

A better understanding of the cellular and molecular mechanisms involved in the reprogramming of somatic cells is essential for further improvement of induced pluripotent stem (iPS) cell technology. In this study, we enriched for cells actively undergoing reprogramming at different time points by sorting the cells stained with a stem cell-selective fluorescent chemical probe CDy1 for their global gene expression analysis. Day-to-day comparison of differentially expressed genes showed highly dynamic and transient gene expressions during reprogramming, which were largely distinct from those of fully-reprogrammed cells. An unbiased analysis of functional regulation indicated robust modulation of concurrent programs at critical junctures. Globally, transcriptional programs involved in cell proliferation, morphology and signal transduction were instantly triggered as early as 3 days-post-infection to prepare the cell for reprogramming but became somewhat muted in the final iPS cells. On the other hand, the highly coordinated metabolic reprogramming process was more gradually activated. Subsequent network analysis of differentially expressed genes indicated PDGF-BB as a core player in reprogramming which was verified by our gain- and loss-of-function experiments. As such, our study has revealed previously-unknown insights into the mechanisms of cellular reprogramming.


Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

  • Jun-Seok Lee‎ et al.
  • PloS one‎
  • 2012‎

Universal phenotyping techniques that can discriminate among various states of biological systems have great potential. We applied 557 fluorescent library compounds to NCI's 60 human cancer cell-lines (NCI-60) to generate a systematic fluorescence phenotypic profiling data. By the kinetic fluorescence intensity analysis, we successfully discriminated the organ origin of all the 60 cell-lines.


Mechanical Properties of Dental Alloys According to Manufacturing Process.

  • Ji-Min Yu‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2021‎

The purpose of this study is to investigate the effect of the fabrication method of dental prosthesis on the mechanical properties. Casting was produced using the lost wax casting method, and milling was designed using a CAD/CAM program. The 3D printing method used the SLS technique to create a three-dimensional structure by sintering metal powder with a laser. When making the specimen, the specimen was oriented at 0, 30, 60, and 90 degrees. All test specimens complied with the requirements of the international standard ISO 22674 for dental alloys. Tensile strength was measured for yield strength, modulus of elasticity and elongation by applying a load until fracture of the specimen at a crosshead speed of 1.5 ± 0.5 mm/min (n = 6, modulus of elasticity n = 3). After the tensile test, the cross section of the fractured specimen was observed with a scanning electron microscope, and the statistics of the data were analyzed with a statistical program SPSS (IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0. Armonk, NY, USA: IBM Corp.) and using Anova and multiple comparison post-tests (scheffe method). The yield strength was the highest at 1042 MPa at an angle of 0 degrees in the specimen produced by 3D printing method, and the elongation was the highest at 14% at an angle of 90 degrees in the specimen produced by 3D printing method. The modulus of elasticity was the highest at 235 GPa in the milled specimen. In particular, the 3D printing group showed a difference in yield strength and elongation according to the build direction. The introduction of various advanced technologies and digital equipment is expected to bring high prospects for the growth of the dental market.


Orthogonally-tunable and ER-targeting fluorophores detect avian influenza virus early infection.

  • Taewon Kang‎ et al.
  • Nature communications‎
  • 2022‎

Cell-based assays can monitor virus infection at a single-cell level with high sensitivity and cost-efficiency. For this purpose, it is crucial to develop molecular probes that respond selectively to physiological changes in live cells. We report stimuli-responsive light-emitters built on a T-shaped benzimidazole platform, and consecutive borylation reactions to produce a library of homologs displaying systematic changes in fluorescence quantum yield and environmental sensitivity. We find that certain fluorophores localize selectively at the endoplasmic reticulum, and interact with proteins involved in the stress signaling pathways. Notably, the mono-borylated compound responds selectively to the stress conditions by enhancing fluorescence, and detects avian influenza virus infection at the single-cell level. Our findings demonstrate the unprecedented practical utility of the stress-responsive molecular probes to differentiate cellular states for early diagnosis.


Which factor can predict the effect of indirect decompression using oblique lumbar interbody fusion?

  • Joon-Bum Woo‎ et al.
  • Medicine‎
  • 2022‎

The aim of this study was to investigate the association between various factors of indirect decompression. Previous studies have demonstrated the effectiveness of indirect decompression. There is no consensus regarding the predictive factors for indirect decompression. Facet joint gap (FJG) and bulging disc thickness (BDT) have never been considered as factors in other studies. We retrospectively reviewed 62 patients who underwent OLIF L4/5 between April 2018 and September 2020. The relationships between cross-sectional area (CSA) change, CSA change ratio, spinal stenosis grade, and various factors were studied. Various factors related to indirect decompression, such as ligament flavum thickness (LFT), foraminal area (FA), disc height (DH), bulging disc thickness(BDT), and facet joint gap (FJG), were measured. CSA increased from 69.72 mm2 preoperatively to 115.95 mm2 postoperatively (P < .001). BDT decreased from 4.97 mm preoperatively to 2.56 mm postoperatively (P < .001). FJG (Right) increased from 2.99 mm preoperatively to 4.38 mm postoperatively (P < .001). FJG (Left) increased from 2.95 mm preoperatively to 4.52 mm postoperatively (P < .001). The improvement of spinal stenosis grade was as follows: 1 point up group, 38 patients; 2 point up groups, 19 patients; and 3 point up groups, 3 patients. The correlation factors were prespinal stenosis grade (0.723, P < .00), CSA change (0.490, P < .00), and FJG change ratio (left, 0.336, P < .008). FJG showed statistical significance with indirect decompression. Indirect decompression principles might be utilized in patients with severe spinal canal stenosis (even grade 4).


Cytarabine induces cachexia with lipid malabsorption via zippering the junctions of lacteal in murine small intestine.

  • Mi-Rae Park‎ et al.
  • Journal of lipid research‎
  • 2023‎

Chemotherapy-induced cachexia causes severe metabolic abnormalities independently of cancer and reduces the therapeutic efficacy of chemotherapy. The underlying mechanism of chemotherapy-induced cachexia remains unclear. Here we investigated the cytarabine (CYT)-induced alteration in energy balance and its underlying mechanisms in mice. We compared energy balance-associated parameters among the three groups of mice: CON, CYT, and PF (pair-fed mice with the CYT group) that were intravenously administered vehicle or CYT. Weight gain, fat mass, skeletal muscle mass, grip strength, and nocturnal energy expenditure were significantly lowered in the CYT group than in the CON and PF groups. The CYT group demonstrated less energy intake than the CON group and higher respiratory quotient than the PF group, indicating that CYT induced cachexia independently from the anorexia-induced weight loss. Serum triglyceride was significantly lower in the CYT group than in the CON group, whereas the intestinal mucosal triglyceride levels and the lipid content within the small intestine enterocyte were higher after lipid loading in the CYT group than in the CON and PF groups, suggesting that CYT inhibited lipid uptake in the intestine. This was not associated with obvious intestinal damage. The CYT group showed increased zipper-like junctions of lymphatic endothelial vessel in duodenal villi compared to that in the CON and CYT groups, suggesting their imperative role in the CYT-induced inhibition of lipid uptake. CYT worsens cachexia independently of anorexia by inhibiting the intestinal lipid uptake, via the increased zipper-like junctions of lymphatic endothelial vessel.


Metformin acts as a dual glucose regulator in mouse brain.

  • Bo-Yeong Jin‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

Aims: Metformin improves glucose regulation through various mechanisms in the periphery. Our previous study revealed that oral intake of metformin activates several brain regions, including the hypothalamus, and directly activates hypothalamic S6 kinase in mice. In this study, we aimed to identify the direct effects of metformin on glucose regulation in the brain. Materials and methods: We investigated the role of metformin in peripheral glucose regulation by directly administering metformin intracerebroventricularly in mice. The effect of centrally administered metformin (central metformin) on peripheral glucose regulation was evaluated by oral or intraperitoneal glucose, insulin, and pyruvate tolerance tests. Hepatic gluconeogenesis and gastric emptying were assessed to elucidate the underlying mechanisms. Liver-specific and systemic sympathetic denervation were performed. Results: Central metformin improved the glycemic response to oral glucose load in mice compared to that in the control group, and worsened the response to intraperitoneal glucose load, indicating its dual role in peripheral glucose regulation. It lowered the ability of insulin to decrease serum glucose levels and worsened the glycemic response to pyruvate load relative to the control group. Furthermore, it increased the expression of hepatic G6pc and decreased the phosphorylation of STAT3, suggesting that central metformin increased hepatic glucose production. The effect was mediated by sympathetic nervous system activation. In contrast, it induced a significant delay in gastric emptying in mice, suggesting its potent role in suppressing intestinal glucose absorption. Conclusion: Central metformin improves glucose tolerance by delaying gastric emptying through the brain-gut axis, but at the same time worsens it by increasing hepatic glucose production via the brain-liver axis. However, with its ordinary intake, central metformin may effectively enhance its glucose-lowering effect through the brain-gut axis, which could surpass its effect on glucose regulation via the brain-liver axis.


Fluoxetine Up-Regulates Bcl-xL Expression in Rat C6 Glioma Cells.

  • Mi Ran Choi‎ et al.
  • Psychiatry investigation‎
  • 2011‎

To analyze both differentially expressed genes and the Bcl-xL protein expression after acute and chronic treatment with fluoxetine in rat C6 glioma cells.


Relation between plasma brain-derived neurotrophic factor and nerve growth factor in the male patients with alcohol dependence.

  • Boung Chul Lee‎ et al.
  • Alcohol (Fayetteville, N.Y.)‎
  • 2009‎

Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are thought to be related to neuroprotection in cell culture and animal studies. Our aim was to verify the changes in human plasma BDNF and NGF concentrations induced by chronic alcohol use. Forty-one male patients with alcohol dependence were sampled the next morning of admission and compared with 41 healthy male subjects. Plasma BDNF and NGF were assayed using an enzyme-linked immunosorbent assay (ELISA). Mean plasma BDNF level was significantly higher in the patients with alcohol dependence (3502.21+/-1726.9 pg/mL) compared with the healthy subjects (861.75+/-478.9 pg/mL) (P=.000). Mean plasma NGF level was also significantly higher in patients with alcohol dependence (137.64+/-32.7 pg/mL) than in healthy subjects (112.61+/-90.2 pg/mL) (P=.012). Plasma BDNF and NGF levels showed significant negative correlation in alcohol dependence group (r=-0.388, P=.012). Increased plasma BDNF and NGF with negative correlation in alcohol-dependent patients may have some role in the regeneration of damage done by chronic alcohol use.


Organelle specific fluorescent phenomics and transcriptomic profiling to evaluate cellular response to tris(1,3 dichloro 2 propyl)phosphate.

  • Md Mamunul Haque‎ et al.
  • Scientific reports‎
  • 2022‎

Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) has been suspected to cause toxicity invertebrates, but its phenotypic effects and the underlying regulatory mechanism have not been fully revealed. Generally, cellular responses tightly control and affect various phenotypes. The scope of the whole organism or cellular toxicological phenotyping, however, has been limited, and quantitative analysis methods using phenotype data have not been fully established. Here, we demonstrated that fluorescence imaging of sub-organelle-based phenomic analysis together with transcriptomic profiling can enable a comprehensive understanding of correlations between molecular and phenomic events. To reveal the cellular response to TDCPP exposure, we obtained three sub-organelle images as fluorescent phenotypes. Transcriptomic perturbation data were measured from the RNA-seq experiment, and both profiling results were analyzed together. Interestingly, organelle phenomic data showed a unique fluorescent intensity increase in the endoplasmic reticulum (ER), and pathway analysis using transcriptomic data also revealed that ER was significantly enriched in gene ontology terms. Following the series of analyses, RNA-seq data also revealed potential carcinogenic effects of TDCPP. Our multi-dimensional profiling approach for organophosphate chemicals can uniquely correlate phenotypic changes with transcriptomic perturbations.


The discovery of penta-peptides inhibiting the activity of the formylglycine-generating enzyme and their potential antibacterial effects against Mycobacterium tuberculosis.

  • Nicholas Asiimwe‎ et al.
  • RSC advances‎
  • 2022‎

The formylglycine-generating enzyme is a key regulator that converts sulfatase into an active form. Despite its key role in many diseases, enzyme activity inhibitors have not yet been reported. In this study, we investigated penta-peptide ligands for FGE activity inhibition and discovered two hit peptides. In addition, the lead peptides also showed potential antibacterial effects in a Mycobacterium tuberculosis model.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: