2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

A Calsequestrin-1 Mutation Associated with a Skeletal Muscle Disease Alters Sarcoplasmic Ca2+ Release.

  • Maria Cristina D'Adamo‎ et al.
  • PloS one‎
  • 2016‎

An autosomal dominant protein aggregate myopathy, characterized by high plasma creatine kinase and calsequestrin-1 (CASQ1) accumulation in skeletal muscle, has been recently associated with a missense mutation in CASQ1 gene. The mutation replaces an evolutionarily-conserved aspartic acid with glycine at position 244 (p.D244G) of CASQ1, the main sarcoplasmic reticulum (SR) Ca2+ binding and storage protein localized at the terminal cisternae of skeletal muscle cells. Here, immunocytochemical analysis of myotubes, differentiated from muscle-derived primary myoblasts, shows that sarcoplasmic vacuolar aggregations positive for CASQ1 are significantly larger in CASQ1-mutated cells than control cells. A strong co-immuno staining of both RyR1 and CASQ1 was also noted in the vacuoles of myotubes and muscle biopsies derived from patients. Electrophysiological recordings and sarcoplasmic Ca2+ measurements provide evidence for less Ca2+ release from the SR of mutated myotubes when compared to that of controls. These findings further clarify the pathogenic nature of the p.D244G variant and point out defects in sarcoplasmic Ca2+ homeostasis as a mechanism underlying this human disease, which could be distinctly classified as "CASQ1-couplonopathy".


Exosomes and exosomal miRNAs from muscle-derived fibroblasts promote skeletal muscle fibrosis.

  • Simona Zanotti‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2018‎

Exosomes, natural carriers of mRNAs, non-coding RNAs and proteins between donor and recipient cells, actively contribute to cell-cell communication. We investigated the potential pro-fibrotic role of exosomes released by muscle-derived fibroblasts of Duchenne muscular dystrophy (DMD) patients, and of miRNAs carried by exosomes. By fibrosis focused array analysis we found that exosomes from DMD fibroblasts, had significantly higher levels of miR-199a-5p, a miRNA up-regulated in fibrotic conditions, compared to control exosomes, while levels in myoblast-derived exosomes were not increased. In control fibroblasts, exposure to DMD fibroblast-derived exosomes induced a myofibroblastic phenotype with increase in α-smooth actin, collagen and fibronectin transcript and protein expression, soluble collagen production and deposition, cell proliferation, and activation of Akt and ERK signaling, while exposure to control exosomes did not. Transfecting control fibroblasts or loading control exosomes with miR-199a-5p mimic or inhibitor induced opposing effects on fibrosis-related mRNAs and proteins, on collagen production and Akt and ERK pathways. Finally, injection of DMD fibroblast-derived exosomes into mouse tibialis anterior muscle after cardiotoxin-induced necrosis, produced greater fibrosis than control exosomes. Our findings indicate that exosomes produced by local fibroblasts in the DMD muscle are able to induce phenotypic conversion of normal fibroblasts to myofibroblasts thereby increasing the fibrotic response. This conversion is related to transfer of high levels of miR-199a-5p and to reduction of its target caveolin-1; both, therefore, are potential therapeutic targets in muscle fibrosis.


Complete loss of the DNAJB6 G/F domain and novel missense mutations cause distal-onset DNAJB6 myopathy.

  • Alessandra Ruggieri‎ et al.
  • Acta neuropathologica communications‎
  • 2015‎

Protein aggregation is a common cause of neuropathology. The protein aggregation myopathy Limb-Girdle Muscular Dystrophy 1D (LGMD1D) is caused by mutations of amino acids Phe89 or Phe93 of DNAJB6, a co-chaperone of the HSP70 anti-aggregation protein. Another DNAJB6 mutation, Pro96Arg, was found to cause a distal-onset myopathy in one family.


Exome sequencing detects compound heterozygous nonsense LAMA2 mutations in two siblings with atypical phenotype and nearly normal brain MRI.

  • Simona Saredi‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2019‎

LAMA2 mutations cause the most frequent congenital muscular dystrophy subtype MDC1A and a variety of milder phenotypes, characterized by total or partial laminin-α2 deficiency. In both severe and milder cases brain MRI invariably shows abnormal white matter signal intensity. We report clinical, histopathological, imaging and genetic data on two siblings with very subtle, and at first undetected, reduction in laminin-α2 expression, and brain MRI showing minor non-specific abnormalities. Clinical features in the female proband were characterized by muscle weakness involving neck and axial muscles, and pelvic girdle and distal lower limb muscles, reduced tendon reflexes and pes cavus. Clinical features in a younger brother were similar, and remained stable in both siblings during the follow up. Whole exome sequencing (WES) detected two heterozygous truncating LAMA2 mutations. Brain MRI in combination with laminin-α2 immunohistochemistry might not be sufficient and WES might be the only means to reach a diagnosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: