Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Alternative transcription of a shorter, non-anti-angiogenic thrombospondin-2 variant in cancer-associated blood vessels.

  • Filip Roudnicky‎ et al.
  • Oncogene‎
  • 2018‎

Thrombospondin-2 (TSP2) is an anti-angiogenic matricellular protein that inhibits tumor growth and angiogenesis. Tumor-associated blood vascular endothelial cells (BECs) were isolated from human invasive bladder cancers and from matched normal bladder tissue by immuno-laser capture microdissection. Exon expression profiling analyses revealed a particularly high expression of a short TSP2 transcript containing only the last 9 (3') exons of the full-length TSP2 transcript. Using 5' and 3' RACE (rapid amplification of cDNA ends) and Sanger sequencing, we confirmed the existence of the shorter transcript of TSP2 (sTSP2) and determined its sequence which completely lacked the anti-angiogenic thrombospondin type 1 repeats domain. The largest open reading frame predicted within the transcript comprises 209 amino acids and matches almost completely the C-terminal lectin domain of full-length TSP2. We produced recombinant sTSP2 and found that unlike the full-length TSP2, sTSP2 did not inhibit vascular endothelial growth factor-A-induced proliferation of cultured human BECs, but in contrast when combined with TSP2 blocked the inhibitory effects of TSP2 on BEC proliferation. In vivo studies with stably transfected A431 squamous cell carcinoma cells revealed that full-length TSP2, but not sTSP2, inhibited tumor growth and angiogenesis. This study reveals that the transcriptional program of tumor stromal cells can change to transcribe a new version of an endogenous angiogenesis inhibitor that has lost its anti-angiogenic activity.


G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer.

  • Maija Hollmén‎ et al.
  • Oncoimmunology‎
  • 2016‎

Tumor-associated macrophages (TAMs) have been implicated in the promotion of breast cancer growth and metastasis, and a strong infiltration by TAMs has been associated with estrogen receptor (ER)-negative tumors and poor prognosis. However, the molecular mechanisms behind these observations are unclear. We investigated macrophage activation in response to co-culture with several breast cancer cell lines (T47D, MCF-7, BT-474, SKBR-3, Cal-51 and MDA-MB-231) and found that high granulocyte colony-stimulating factor (G-CSF) secretion by the triple-negative breast cancer (TNBC) cell line MDA-MB-231 gave rise to immunosuppressive HLA-DRlo macrophages that promoted migration of breast cancer cells via secretion of TGF-α. In human breast cancer samples (n = 548), G-CSF was highly expressed in TNBC (p < 0.001) and associated with CD163+ macrophages (p < 0.0001), poorer overall survival (OS) (p = 0.021) and significantly increased numbers of TGF-α+ cells. While G-CSF blockade in the 4T1 mammary tumor model promoted maturation of MHCIIhi blood monocytes and TAMs and significantly reduced lung metastasis, anti-CSF-1R treatment promoted MHCIIloF4/80hiMRhi anti-inflammatory TAMs and enhanced lung metastasis in the presence of high G-CSF levels. Combined anti-G-CSF and anti-CSF-1R therapy significantly increased lymph node metastases, possibly via depletion of the so-called "gate-keeper" subcapsular sinus macrophages. These results indicate that G-CSF promotes the anti-inflammatory phenotype of tumor-induced macrophages when CSF-1R is inhibited and therefore caution against the use of M-CSF/CSF-1R targeting agents in tumors with high G-CSF expression.


Itch suppression in mice and dogs by modulation of spinal α2 and α3GABAA receptors.

  • William T Ralvenius‎ et al.
  • Nature communications‎
  • 2018‎

Chronic itch is a highly debilitating condition affecting about 10% of the general population. The relay of itch signals is under tight control by inhibitory circuits of the spinal dorsal horn, which may offer a hitherto unexploited therapeutic opportunity. Here, we found that specific pharmacological targeting of inhibitory α2 and α3GABAA receptors reduces acute histaminergic and non-histaminergic itch in mice. Systemic treatment with an α2/α3GABAA receptor selective modulator alleviates also chronic itch in a mouse model of atopic dermatitis and in dogs sensitized to house dust mites, without inducing sedation, motor dysfunction, or loss of antipruritic activity after prolonged treatment. Transsynaptic circuit tracing, immunofluorescence, and electrophysiological experiments identify spinal α2 and α3GABAA receptors as likely molecular targets underlying the antipruritic effect. Our results indicate that drugs targeting α2 and α3GABAA receptors are well-suited to alleviate itch, including non-histaminergic chronic itch for which currently no approved treatment exists.


CD169+ lymph node macrophages have protective functions in mouse breast cancer metastasis.

  • Carlotta Tacconi‎ et al.
  • Cell reports‎
  • 2021‎

Although the contribution of macrophages to metastasis is widely studied in primary tumors, the involvement of macrophages in tumor-draining lymph nodes (LNs) in this process is less clear. We find CD169+ macrophages as the predominant macrophage subtype in naive LNs, which undergo proliferative expansion in response to tumor stimuli. CD169+ LN macrophage depletion, using an anti-CSF-1R antibody or clodronate-loaded liposomes, leads to increased metastatic burden in two mouse breast cancer models. The expansion of CD169+ macrophages is tightly connected to B cell expansion in tumor-draining LNs, and B cell depletion abrogates the effect of CD169+ macrophage absence on metastasis, indicating that the CD169+ macrophage anti-metastatic effects require B cell presence. These results reveal a protective role of CD169+ LN macrophages in breast cancer metastasis and raise caution for the use of drugs aiming at the depletion of tumor-associated macrophages, which might simultaneously deplete macrophages in tumor-draining LNs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: