Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 235 papers

Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth.

  • Huanan Wang‎ et al.
  • Cancer cell international‎
  • 2016‎

The most common genetic changes identified in human NSCLC are Kras mutations (10-30 %) and p53 mutation or loss (50-70 %). Moreover, NSCLC with mutations in Kras and p53 poorly respond to current therapies, so we are trying to find a new target for the treatment strategies.


Co-targeting hexokinase 2-mediated Warburg effect and ULK1-dependent autophagy suppresses tumor growth of PTEN- and TP53-deficiency-driven castration-resistant prostate cancer.

  • Lei Wang‎ et al.
  • EBioMedicine‎
  • 2016‎

Currently, no therapeutic options exist for castration-resistant prostate cancer (CRPC) patients who have developed resistance to the second generation anti-androgen receptor (AR) axis therapy. Here we report that co-deletion of Pten and p53 in murine prostate epithelium, often observed in human CRPC, leads to AR-independent CRPC and thus confers de novo resistance to second generation androgen deprivation therapy (ADT) in multiple independent yet complementary preclinical mouse models. In contrast, mechanism-driven co-targeting hexokinase 2 (HK2)-mediated Warburg effect with 2-deoxyglucose (2-DG) and ULK1-dependent autophagy with chloroquine (CQ) selectively kills cancer cells through intrinsic apoptosis to cause tumor regression in xenograft, leads to a near-complete tumor suppression and remarkably extends survival in Pten-/p53-deficiency-driven CRPC mouse model. Mechanistically, 2-DG causes AMPK phosphorylation, which in turn inhibits mTORC1-S6K1 translation signaling to preferentially block anti-apoptotic protein MCL-l synthesis to prime mitochondria-dependent apoptosis while simultaneously activates ULK1-driven autophagy for cell survival to counteract the apoptotic action of anti-Warburg effect. Accordingly, inhibition of autophagy with CQ sensitizes cancer cells to apoptosis upon 2-DG challenge. Given that 2-DG is recommended for phase II clinical trials for prostate cancer and CQ has been clinically used as an anti-malaria drug for many decades, the preclinical results from our proof-of-principle studies in vivo are imminently translatable to clinical trials to evaluate the therapeutic efficacy by the combination modality for a subset of currently incurable CRPC harboring PTEN and TP53 mutations.


Metallothionein plays a prominent role in the prevention of diabetic nephropathy by sulforaphane via up-regulation of Nrf2.

  • Hao Wu‎ et al.
  • Free radical biology & medicine‎
  • 2015‎

Sulforaphane (SFN) prevents diabetic nephropathy (DN) in type 1 diabetes via up-regulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). However, it has not been addressed whether SFN also prevents DN from type 2 diabetes or which Nrf2 downstream gene(s) play(s) the key role in SFN renal protection. Here we investigated whether Nrf2 is required for SFN protection against type 2 diabetes-induced DN and whether metallothionein (MT) is an Nrf2 downstream antioxidant using Nrf2 knockout (Nrf2-null) mice. In addition, MT knockout mice were used to further verify if MT is indispensable for SFN protection against DN. Diabetes-increased albuminuria, renal fibrosis, and inflammation were significantly prevented by SFN, and Nrf2 and MT expression was increased. However, SFN renal protection was completely lost in Nrf2-null diabetic mice, confirming the pivotal role of Nrf2 in SFN protection from type 2 diabetes-induced DN. Moreover, SFN failed to up-regulate MT in the absence of Nrf2, suggesting that MT is an Nrf2 downstream antioxidant. MT deletion resulted in a partial, but significant attenuation of SFN renal protection from type 2 diabetes, demonstrating a partial requirement for MT for SFN renal protection. Therefore, the present study demonstrates for the first time that as an Nrf2 downstream antioxidant, MT plays an important, though partial, role in mediating SFN renal protection from type 2 diabetes.


Differentially expressed microRNAs in bone marrow mesenchymal stem cell-derived microvesicles in young and older rats and their effect on tumor growth factor-β1-mediated epithelial-mesenchymal transition in HK2 cells.

  • Yan Wang‎ et al.
  • Stem cell research & therapy‎
  • 2015‎

The prevalence of renal fibrosis is higher in older than in younger individuals. Through paracrine activity, bone marrow mesenchymal stem cell-derived microvesicles (BM-MSC-MVs) influence the process of renal fibrosis. Differences in microRNA (miRNA) expression of BM-MSC-MVs that correlate with the age of the subjects and the correlation between miRNA expression and the process of renal fibrosis have not been established. The present study aimed to analyze differences in miRNA expression of BM-MSC-MVs between young or older rats and its influence on tumor growth factor-beta 1 (TGF-β1)-mediated epithelial-mesenchymal transition (EMT) of HK2 cells to explore the causes of renal fibrosis in aged tissues.


Synthesis of chiral ND-322, ND-364 and ND-364 derivatives as selective inhibitors of human gelatinase.

  • Yugang Yan‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2015‎

Compounds 10 (ND-322) and 15 (ND-364) are potent selective inhibitors for gelatinases, matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9). However, both of them are racemates. Herein we report facile synthesis of optically active (R)- and (S)-enantiomers of compounds 10 and 15. And the sulfonyl of 15 was transformed to sulfinyl to obtain four epimeric mixtures. All synthesized thiirane-based compounds were evaluated in MMP2 and MMP9 inhibitory assays. Our results indicated that the configuration of thiirane moiety had little effects on gelatinase inhibition, but the substitution of sulfinyl for sulfonyl was detrimental to gelatinase inhibition. Besides, all target compounds exhibited no inhibition against other two Zn(2+) dependant metalloproteases, aminopeptidase N (APN) and histone deacetylases (HDACs), which confirmed the unique Zn(2+) chelation mechanism of thiirane moiety against gelatinases.


CSIG promotes hepatocellular carcinoma proliferation by activating c-MYC expression.

  • Qian Cheng‎ et al.
  • Oncotarget‎
  • 2015‎

Cellular senescence-inhibited gene (CSIG) protein significantly prolongs the progression of replicative senescence, but its role in tumorigenesis is unclear. To reveal the role of CSIG in HCC, we determined its expression in HCC tissues and surrounding tissues and its functions in tumor cell proliferation in vitro and in vivo. CSIG protein was overexpressed in 86.4% of the human HCC cancerous tissues as compared with matched surrounding tissues, and its protein expression was greater in HCC cells than the non-transformed hepatic cell line L02. Furthermore, upregulation of CSIG significantly increased the colony formation of SMMC7721 and HepG2 cells, and silencing CSIG could induce cell cycle arrest and cell apoptosis. The tumorigenic ability of CSIG was confirmed in vivo in a mouse xenograft model. Our results showed that CSIG promoted the proliferation of HepG2 and SMMC7721 cells in vivo. Finally, CSIG protein directly interacted with c-MYC protein and increased c-MYC protein levels; the ubiquitination and degradation of c-MYC protein was increased with knockdown of CSIG. CSIG could also increase the expression of c-MYC protein in SMMC7721 cells in vivo, and it was noted that the level of c-MYC protein was also elevated in most human cancerous tissues with high level of CSIG.


Purified vitexin compound 1, a new neolignan isolated compound, promotes PUMA-dependent apoptosis in colorectal cancer.

  • Jingfei Chen‎ et al.
  • Cancer medicine‎
  • 2018‎

Purified vitexin compound 1 (VB1, a neolignan isolated and extracted from the seed of Chinese herb Vitex negundo) is an effective antitumor agent and exhibits promising clinical activity against various cancers including colorectal cancer. However, it remains unknown about the precise underlying mechanism associated with the antitumor effect of VB1 and how it triggers apoptosis in cancer cells. Here, we demonstrated that VB1 promoted apoptosis via p53-dependent induction of p53 upregulated modulator of apoptosis (PUMA) and further to induce Bax (Bcl-2-associated X protein) activation and mitochondrial dysfunction in colon cancer HCT-116 and LoVo cells. Deficiency in p53, PUMA, or Bax abrogated VB1-induced apoptosis and promoted cell survival in HCT-116 cells. Furthermore, the combination of VB1 with chemotherapeutic drugs 5-fluorouracil (5-FU) or NVP-BZE235 resulted in a synergistic antitumor effect via PUMA induction in HCT-116 cells. VB1 significantly suppressed the cell proliferation of wild-type (WT) HCT-116 and LoVo cells in vitro and tumor growth in vivo. The results indicate that p53/PUMA/Bax axis plays a critical role in VB1-induced apoptosis and VB1 may have valuable clinical applications in cancer therapy as a novel anticancer agent used alone or in combination with other chemotherapeutic drugs.


Exogenous biological renal support ameliorates renal pathology after ischemia reperfusion injury in elderly mice.

  • Dong Liu‎ et al.
  • Aging‎
  • 2019‎

We established an exogenous biological renal support model through the generation of parabiotic mice. At 72 hours after ischemia reperfusion injury (IRI), the aged mice that received exogenous biological renal support showed significantly higher levels of renal cell proliferation and dedifferentiation, lower levels of renal tubular injury, improved renal function, and a lower mortality than those that did not receive exogenous biological renal support. Using the Quantibody Mouse Cytokine Antibody Array, we found that aged IRI mice that received exogenous biological renal support had an up-regulation of multiple inflammatory related cytokines compared to the group that did not receive exogenous biological renal support. We suggest that the exogenous biological renal support might promote renal tubular epithelial cell proliferation and dedifferentiation and improve the prognosis of aged IRI mice. Exogenous biological renal support may play an important role in the amelioration of renal IRI by regulating the expression of multiple cytokines.


Danggui Buxue Tang Attenuates Tubulointerstitial Fibrosis via Suppressing NLRP3 Inflammasome in a Rat Model of Unilateral Ureteral Obstruction.

  • Linna Wang‎ et al.
  • BioMed research international‎
  • 2016‎

Inflammation significantly contributes to the progression of chronic kidney disease (CKD). This study aimed to characterize Danggui Buxue Tang (DBT) renoprotection and relationship with NOD-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome expression in rats with unilateral ureteral obstruction (UUO). Sprague-Dawley rats were subjected to UUO and randomly assigned to untreated UUO, enalapril-treated (10 mg/kg/day), and DBT-treated (9 g/kg/day) groups. Sham-operated rats served as controls, with 8 rats in each group. All rats were sacrificed for blood and renal specimen collection at 14 days after UUO. Untreated UUO rats exhibited azotemia, intense tubulointerstitial collagen deposition, upregulations of tubulointerstitial injury index, augmentation levels of collagen I (Col I), α-smooth muscle actin (α-SMA), NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, caspase-1, IL-1β, and pro-IL-1β. DBT treatment significantly attenuated interstitial collagen deposition and tubulointerstitial injury, lowering Col I and α-SMA levels. Synchronous expressions of NLRP3, ASC, pro-caspase-1, caspase-1, pro-IL-1β, and IL-1β decreased in renal tissue. In comparison to enalapril, DBT significantly reduced tubulointerstitial injury, interstitial collagen deposition, and expressions of Col I and IL-1β. Thus, DBT offers renoprotection in UUO rats, which was associated with suppressing NLRP3 inflammasome expression and following reduction of the secretion of cytokine IL-1β. The mechanisms of multitargets of traditional Chinese medicine can be better used for antifibrotic treatment.


F-box protein FBXO31 is down-regulated in gastric cancer and negatively regulated by miR-17 and miR-20a.

  • Xinchao Zhang‎ et al.
  • Oncotarget‎
  • 2014‎

FBXO31, a subunit of the SCF ubiquitin ligase, played a crucial role in neuronal development, DNA damage response and tumorigenesis. Here, we investigated the expression and prognosis value of FBXO31 in human primary gastric cancer (GC) samples. Meanwhile, the biological role and the regulation mechanism of FBXO31 were evaluated. We found that FBXO31 mRNA and protein was decreased dramatically in the GC tissue compared with the adjacent non-cancerous tissues. FBXO31 expression was significantly associated with tumor size, tumor infiltration, clinical grade and patients' prognosis. FBXO31 overexpression significantly decreased colony formation and induced a G1-phase arrest and inhibited the expression of CyclinD1 protein in GC cells. Further evidence was obtained from knockdown of FBXO31. Ectopic expression of FBXO31 dramatically inhibited xenograft tumor growth in nude mice. miR-20a and miR-17 mimics inhibited, whereas the inhibitor of miR-20a and miR-17 increased, the expression of FBXO31, respectively. miR-20a and miR-17 directly bind to the 3'-UTR of FBXO31. The level of miR-20a and miR-17 in GC tissue was significantly higher than that in surrounding normal mucosa. Moreover, a highly significant negative correlation between miR-20a (miR-17) and FBXO31 was observed in these GC samples. Therefore, effective therapy targeting the miR-20a (miR-17)-FBXO31-CyclinD1 pathway may help control GC progression.


GDF11 improves tubular regeneration after acute kidney injury in elderly mice.

  • Ying Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

The GDF11 expression pattern and its effect on organ regeneration after acute injury in the elderly population are highly controversial topics. In our study, GDF11/8 expression increased after kidney ischemia-reperfusion injury (IRI), and the relatively lower level of GDF11/8 in the kidneys of aged mice was associated with a loss of proliferative capacity and a decline in renal repair, compared to young mice. In vivo, GDF11 supplementation in aged mice increased vimentin and Pax2 expression in the kidneys as well as the percentage of 5-ethynyl-2'-deoxyuridine (EdU)-positive proximal tubular epithelial cells. GDF11 improved the renal repair, recovery of renal function, and survival of elderly mice at 72 h after IRI. Moreover, the addition of recombinant GDF11 to primary renal epithelial cells increased proliferation, migration, and dedifferentiation by upregulating the ERK1/2 pathway in vitro. Our study indicates that GDF11/8 in the kidney decreases with age and that GDF11 can increase tubular cell dedifferentiation and proliferation as well as improve tubular regeneration after acute kidney injury (AKI) in old mice.


An intrinsic mechanism controls reactivation of neural stem cells by spindle matrix proteins.

  • Song Li‎ et al.
  • Nature communications‎
  • 2017‎

The switch between quiescence and proliferation is central for neurogenesis and its alteration is linked to neurodevelopmental disorders such as microcephaly. However, intrinsic mechanisms that reactivate Drosophila larval neural stem cells (NSCs) to exit from quiescence are not well established. Here we show that the spindle matrix complex containing Chromator (Chro) functions as a key intrinsic regulator of NSC reactivation downstream of extrinsic insulin/insulin-like growth factor signalling. Chro also prevents NSCs from re-entering quiescence at later stages. NSC-specific in vivo profiling has identified many downstream targets of Chro, including a temporal transcription factor Grainy head (Grh) and a neural stem cell quiescence-inducing factor Prospero (Pros). We show that spindle matrix proteins promote the expression of Grh and repress that of Pros in NSCs to govern their reactivation. Our data demonstrate that nuclear Chro critically regulates gene expression in NSCs at the transition from quiescence to proliferation.The spindle matrix proteins, including Chro, are known to regulate mitotic spindle assembly in the cytoplasm. Here the authors show that in Drosophila larval brain, Chro promotes neural stem cell (NSC) reactivation and prevents activated NSCs from entering quiescence, and that Chro carries out such a role by regulating the expression of key transcription factors in the nucleus.


Dietary restriction delays the secretion of senescence associated secretory phenotype by reducing DNA damage response in the process of renal aging.

  • Wenjuan Wang‎ et al.
  • Experimental gerontology‎
  • 2018‎

Dietary restriction (DR) has multiple and essential effects in protecting against DNA damage in model organisms. Persistent DNA damage plays a central role in the process of aging. Senescence-associated secretory phenotype (SASP), as a product of cellular aging, can accelerate the process of cellular senescence as a feedback. In this study, we directly observed whether a DR of 30% for 6months in aged rats could retard SASP by delaying the progression of DNA damage and also found the specific mechanism. The results revealed that a 30% DR could significantly improve renal pathology and some metabolic characteristics. The biomarkers and products of DNA damage were decreased in the process of renal aging on a 30% DR. A series of SASP, notably cytokine, chemokine, and growth factor, were obviously reduced by DR during renal aging. The phosphorylation levels of NF-κB and IκBα in aged kidneys of DR group were markedly reduced. These findings suggest that a 30% DR for 6months can delay renal aging and reduce the accumulation of SASP by retarding the progression of DNA damage and decreasing the transcription activity of NF-κB, thus providing a target to delay renal aging.


Discovery of a fluorescent probe with HDAC6 selective inhibition.

  • Yingjie Zhang‎ et al.
  • European journal of medicinal chemistry‎
  • 2017‎

There is increasing interest in discovering HDAC6 selective inhibitors as chemical probes to elucidate the biological functions of HDAC6 and ultimately as new therapeutic agents. Small-molecular fluorescent probes are widely used to detect target protein location and function, identify protein complex composition in biological processes of interest. In the present study, structural modification of the previously reported compound 4MS leads to two novel fluorescent HDAC inhibitors, 6a and 6b. Determination of IC50 values against the panel of Zn2+ dependent HDACs (HDAC1-11) reveals that 6b is a HDAC6 selective inhibitor, which can induce hyperacetylation of tubulin but not histone H4. Importantly, fluorescent and immunofluorescent analyses of cells treated with the proteasome inhibitor MG132 demonstrates that 6b can selectively target and image HDAC6 within the inclusion body, the aggresome. These results identify 6b not only as a HDAC6 selective inhibitor but also as a fluorescent probe for imaging HDAC6 and investigating the roles of HDAC6 in various physiological and pathological contexts.


Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging.

  • Matthew A Churgin‎ et al.
  • eLife‎
  • 2017‎

The roundworm C. elegans is a mainstay of aging research due to its short lifespan and easily manipulable genetics. Current, widely used methods for long-term measurement of C. elegans are limited by low throughput and the difficulty of performing longitudinal monitoring of aging phenotypes. Here we describe the WorMotel, a microfabricated device for long-term cultivation and automated longitudinal imaging of large numbers of C. elegans confined to individual wells. Using the WorMotel, we find that short-lived and long-lived strains exhibit patterns of behavioral decline that do not temporally scale between individuals or populations, but rather resemble the shortest and longest lived individuals in a wild type population. We also find that behavioral trajectories of worms subject to oxidative stress resemble trajectories observed during aging. Our method is a powerful and scalable tool for analysis of C. elegans behavior and aging.


Effect of 5/6 nephrectomized rat serum on epithelial-to-mesenchymal transition in vitro.

  • Zhaoyu Lu‎ et al.
  • Renal failure‎
  • 2011‎

To investigate whether the 5/6 nephrectomized (5/6Nx) rats' 12-week serum could lead to tubular epithelial-to-mesenchymal transition (EMT) and its molecular mechanism, so as to probe the potential stimulation from circulation in chronic progressive kidney disease.


Autophagy can repair endoplasmic reticulum stress damage of the passive Heymann nephritis model as revealed by proteomics analysis.

  • Liyuan Wang‎ et al.
  • Journal of proteomics‎
  • 2012‎

Membranous nephropathy is a common cause of nephrotic syndrome in adults. Although many mechanisms have been proposed, whole proteomic research is still lacking. We analyzed the passive Heymann nephritis animal model using label-free quantitative proteome technology. Results showed 160 differential proteins between control and PHN model groups at days 14 and 21. The expression level of endoplasmic reticulum stress (ERS)-associated protein GRP78 and GRP94 protein was up-regulated on day 14 or 21, which was confirmed by Western blotting. The results also showed that the autophagy marker LC3 was up-regulated in the models. Furthermore, we used tunicamycin to induce ERS of podocytes in vitro to investigate the mechanism. Results of Western blotting revealed that the expression of GRP78, GRP94, and LC3 was up-regulated, while that of the cytoskeletal protein tubulin-β was down-regulated, and immunofluorescence displayed disordered distribution of tubulin-β. These suggest that ERS plays an important role in podocyte damage. Autophagy can repair the cytoskeleton damage caused by ERS as a protective mechanism. This provides an important basis for a thorough understanding of the mechanism of podocyte damage and the pathogenesis of membranous nephropathy.


Identification and characterization of CCAAT/Enhancer Binding proteindelta (C/EBPdelta) target genes in G0 growth arrested mammary epithelial cells.

  • Yingjie Zhang‎ et al.
  • BMC molecular biology‎
  • 2008‎

CCAAT/Enhancer Binding Proteindelta (C/EBPdelta) is a member of the highly conserved C/EBP family of leucine zipper (bZIP) proteins. C/EBPdelta is highly expressed in G0 growth arrested mammary epithelial cells (MECs) and "loss of function" alterations in C/EBPdelta have been associated with impaired contact inhibition, increased genomic instability and increased cell migration. Reduced C/EBPdelta expression has also been reported in breast cancer and acute myeloid leukemia (AML). C/EBPdelta functions as a transcriptional activator, however, only a limited number of C/EBPdelta target genes have been reported. As a result, the role of C/EBPdelta in growth control and the potential mechanisms by which "loss of function" alterations in C/EBPdelta contribute to tumorigenesis are poorly understood. The goals of the present study were to identify C/EBPdelta target genes using Chromatin Immunoprecipitation coupled with a CpG Island (HCG12K) Array gene chip ("ChIP-chip") assay and to assess the expression and potential functional roles of C/EBPdelta target genes in growth control.


The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission.

  • Mengjie Huang‎ et al.
  • Redox biology‎
  • 2018‎

The accumulation of uremic toxins in chronic kidney disease (CKD) induces inflammation, oxidative stress and endothelial dysfunction, which is a key step in atherosclerosis. Accumulating evidence indicates increased mitochondrial fission is a contributing mechanism for impaired endothelial function. Hippurate, a uremic toxin, has been reported to be involved in cardiovascular diseases. Here, we assessed the endothelial toxicity of hippurate and the contribution of altered mitochondrial dynamics to hippurate-induced endothelial dysfunction. Treatment of human aortic endothelial cells with hippurate reduced the expression of endothelial nitric oxide synthase (eNOS) and increased the expression of intercellular cell adhesion molecule-1 (ICAM-1) and von Willebrand factor (vWF). The mechanisms of hippurate-induced endothelial dysfunction in vitro depended on the activation of Dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and overproduction of mitochondrial reactive oxygen species (mitoROS). In a rat model in which CKD was induced by 5/6 nephrectomy (CKD rat), we observed increased oxidative stress, impaired endothelium-dependent vasodilation, and elevated soluble biomarkers of endothelial dysfunction (ICAM-1 and vWF). Similarly, endothelial dysfunction was identified in healthy rats treated with disease-relevant concentrations of hippurate. In aortas of CKD rats and hippurate-treated rats, we observed an increase in Drp1 protein levels and mitochondrial fission. Inhibition of Drp1 improved endothelial function in both rat models. These results indicate that hippurate, by itself, can cause endothelial dysfunction. Increased mitochondrial fission plays an active role in hippurate-induced endothelial dysfunction via an increase in mitoROS.


The Integrator Complex Prevents Dedifferentiation of Intermediate Neural Progenitors back into Neural Stem Cells.

  • Yingjie Zhang‎ et al.
  • Cell reports‎
  • 2019‎

Mutations of the Integrator subunits are associated with neurodevelopmental disorders and cancers. However, their role during neural development is poorly understood. Here, we demonstrate that the Drosophila Integrator complex prevents dedifferentiation of intermediate neural progenitors (INPs) during neural stem cell (neuroblast) lineage development. Loss of intS5, intS8, and intS1 generated ectopic type II neuroblasts. INP-specific knockdown of intS8, intS1, and intS2 resulted in the formation of excess type II neuroblasts, indicating that Integrator prevents INP dedifferentiation. Cell-type-specific DamID analysis identified 1413 IntS5-binding sites in INPs, including zinc-finger transcription factor earmuff (erm). Furthermore, erm expression is lost in intS5 and intS8 mutant neuroblast lineages, and intS8 genetically interacts with erm to suppress the formation of ectopic neuroblasts. Taken together, our data demonstrate that the Drosophila Integrator complex plays a critical role in preventing INP dedifferentiation primarily by regulating a key transcription factor Erm that also suppresses INP dedifferentiation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: