Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

GDF11 improves tubular regeneration after acute kidney injury in elderly mice.

  • Ying Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

The GDF11 expression pattern and its effect on organ regeneration after acute injury in the elderly population are highly controversial topics. In our study, GDF11/8 expression increased after kidney ischemia-reperfusion injury (IRI), and the relatively lower level of GDF11/8 in the kidneys of aged mice was associated with a loss of proliferative capacity and a decline in renal repair, compared to young mice. In vivo, GDF11 supplementation in aged mice increased vimentin and Pax2 expression in the kidneys as well as the percentage of 5-ethynyl-2'-deoxyuridine (EdU)-positive proximal tubular epithelial cells. GDF11 improved the renal repair, recovery of renal function, and survival of elderly mice at 72 h after IRI. Moreover, the addition of recombinant GDF11 to primary renal epithelial cells increased proliferation, migration, and dedifferentiation by upregulating the ERK1/2 pathway in vitro. Our study indicates that GDF11/8 in the kidney decreases with age and that GDF11 can increase tubular cell dedifferentiation and proliferation as well as improve tubular regeneration after acute kidney injury (AKI) in old mice.


Dietary restriction delays the secretion of senescence associated secretory phenotype by reducing DNA damage response in the process of renal aging.

  • Wenjuan Wang‎ et al.
  • Experimental gerontology‎
  • 2018‎

Dietary restriction (DR) has multiple and essential effects in protecting against DNA damage in model organisms. Persistent DNA damage plays a central role in the process of aging. Senescence-associated secretory phenotype (SASP), as a product of cellular aging, can accelerate the process of cellular senescence as a feedback. In this study, we directly observed whether a DR of 30% for 6months in aged rats could retard SASP by delaying the progression of DNA damage and also found the specific mechanism. The results revealed that a 30% DR could significantly improve renal pathology and some metabolic characteristics. The biomarkers and products of DNA damage were decreased in the process of renal aging on a 30% DR. A series of SASP, notably cytokine, chemokine, and growth factor, were obviously reduced by DR during renal aging. The phosphorylation levels of NF-κB and IκBα in aged kidneys of DR group were markedly reduced. These findings suggest that a 30% DR for 6months can delay renal aging and reduce the accumulation of SASP by retarding the progression of DNA damage and decreasing the transcription activity of NF-κB, thus providing a target to delay renal aging.


Generation of iPSC from peripheral blood mononuclear cells obtained from a patient with TSC2-PKD1 contiguous gene deletion syndrome.

  • Jian Li‎ et al.
  • Stem cell research‎
  • 2021‎

TSC2-PKD1 contiguous gene deletion syndrome is characterized by tuberous sclerosis complex and polycystic kidney disease. We obtained peripheral blood mononuclear cells from a patient with TSC2-PKD1 contiguous gene deletion syndrome. We performed reprogramming using non-integrative episomal vectors to obtain human induced pluripotent stem cells (iPSCs). The obtained iPSCs had a normal karyotype and expressed human ES cell-specific cell surface markers and genes; in teratomas, iPSCs differentiated into derivatives of all three germ layers. The iPSCs can be used to study pathogenesis of TSC2-PKD1 contiguous gene deletion syndrome and serve as a potential therapeutic target.


Exogenous biological renal support ameliorates renal pathology after ischemia reperfusion injury in elderly mice.

  • Dong Liu‎ et al.
  • Aging‎
  • 2019‎

We established an exogenous biological renal support model through the generation of parabiotic mice. At 72 hours after ischemia reperfusion injury (IRI), the aged mice that received exogenous biological renal support showed significantly higher levels of renal cell proliferation and dedifferentiation, lower levels of renal tubular injury, improved renal function, and a lower mortality than those that did not receive exogenous biological renal support. Using the Quantibody Mouse Cytokine Antibody Array, we found that aged IRI mice that received exogenous biological renal support had an up-regulation of multiple inflammatory related cytokines compared to the group that did not receive exogenous biological renal support. We suggest that the exogenous biological renal support might promote renal tubular epithelial cell proliferation and dedifferentiation and improve the prognosis of aged IRI mice. Exogenous biological renal support may play an important role in the amelioration of renal IRI by regulating the expression of multiple cytokines.


Krϋppel-like factor 15 suppresses renal glomerular mesangial cell proliferation via enhancing P53 SUMO1 conjugation.

  • Lingling Wu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Mesangial cell (MC) proliferation is a key pathological feature in a number of common human renal diseases, including mesangial proliferative nephritis and diabetic nephropathies. Knowledge of MC responses to pathological stimuli is crucial to the understanding of these disease processes. We previously determined that Krϋppel-like factor 15 (KLF15), a kidney-enriched zinc-finger transcription factor, was required for inhibition of MC proliferation. In the present study, we investigated the direct target gene and the underlying mechanism by which KLF15 regulated mesangial proliferation. First, we screened small ubiquitin-related modifier 1 (SUMO1) as the direct transcriptional target of KLF15 and validated this finding with ChIP-PCR and luciferase assays. Furthermore, we demonstrated that overexpressing KLF15 or SUMO1 enhanced the stability of P53, which blocked the cell cycle of human renal MCs (HRMCs) and therefore abolished cell proliferation. Conversely, knockdown of SUMO1 in HRMCs, even those overexpressed with KLF15, could not inhibit HRMC proliferation rates and increase SUMOylation of P53. Finally, the results showed that the levels of SUMOylated P53 in the kidney cortices of anti-Thy 1 model rats were decreased during proliferation periods. These findings reveal the critical mechanism by which KLF15 targets SUMO1 to mediate the proliferation of MCs.


Exogenous Biological Renal Support Improves Kidney Function in Mice With Rhabdomyolysis-Induced Acute Kidney Injury.

  • Chao Liu‎ et al.
  • Frontiers in medicine‎
  • 2021‎

Background: Rhabdomyolysis (RM) is a clinical syndrome characterized by breakdown of skeletal muscle fibers and release of their contents into the circulation. Myoglobin-induced acute kidney injury (AKI) is one of the most severe complications of RM. Based on our previous research, exogenous biological renal support alleviates renal ischemia-reperfusion injury in elderly mice. This study aimed to determine whether exogenous biological renal support promotes renal recovery from RM-induced AKI and to preliminarily explore the mechanisms involved. Methods: A parabiosis animal model was established to investigate the effects of exogenous biological renal support on RM-induced AKI. Mice were divided into three groups: the control group (in which mice were injected with sterile saline), the RM group (in which mice were injected with 8 mL/kg glycerol), and the parabiosis + RM group (in which recipient mice were injected with glycerol 3 weeks after parabiosis model establishment). Blood samples and kidney tissue were collected for further processing 48 h after RM induction. Bioinformatics analysis was conducted via Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, functional enrichment analysis, and clustering analysis. Results: No mice died within 48 h after the procedure. Exogenous biological renal support attenuated the histological and functional deterioration in mice with RM-induced AKI. Bioinformatics analysis identified key pathways and proteins involved in this process. We further demonstrated that exogenous biological renal support ameliorated AKI through multiple mechanisms, including by suppressing the complement system; attenuating oxidative stress, inflammation, and cell death; and increasing proliferation. Conclusions: Exogenous biological renal support provided by parabiosis can improve renal function in RM-induced AKI by suppressing the complement system; decreasing oxidative stress, inflammation, and cell death; and promoting tubular cell proliferation. Our study provides basic research evidence for the use of bioartificial kidneys to treat RM-induced AKI.


Safety and Efficacy of Roxadustat for Anemia in Patients With Chronic Kidney Disease: A Meta-Analysis and Trial Sequential Analysis.

  • Chao Liu‎ et al.
  • Frontiers in medicine‎
  • 2021‎

Background: Roxadustat, a hypoxia-inducible factor prolyl-hydroxylase inhibitor (HIF-PHI), has been used to treat anemia in patients with chronic kidney disease (CKD). However, its safety and efficacy remain controversial. Methods: The PubMed, EMBASE, Science Citation Index, Cochrane Central Register of Controlled Trials, and Clinical Trial Registries databases were searched for relevant studies published up to April 2021. We identified randomized controlled trials (RCTs) comparing roxadustat with placebo or erythropoiesis-stimulating agents (ESAs) in anemia patients with CKD with or without dialysis. Results: Eleven studies including 6,631 patients met the inclusion criteria. In non-dialysis-dependent (NDD-) and dialysis-dependent (DD-) CKD patients, the total adverse events were not significantly different between the roxadustat and control (placebo for NDD-CKD patients and ESA for DD-CKD patients) groups [relative risk (RR) = 1.02, 95% confidence interval (CI) = 1.00, 1.04, P = 0.08, and RR = 1.22, 95% CI = 0.91, 1.64, P = 0.18, respectively], and the trial sequential analysis (TSA) confirmed the result in the NDD-CKD groups. No significant differences in hyperkalemia and infection incidences were found between roxadustat and placebo in the DD-CKD groups. The pooled results showed that roxadustat significantly increased the hemoglobin response rate compared with placebo in the NDD-CKD group and had an effect similar to that of ESA in the DD-CKD group. However, iron metabolism parameters did not seem to be obviously optimized by roxadustat. Conclusion: Roxadustat can be safely used in CKD patients. Oral roxadustat was more effective than placebo as a therapy for anemia in NDD-CKD patients and non-inferior to ESA in correcting anemia in DD-CKD patients. However, additional clinical trials are still needed to further prove whether roxadustat can optimize iron metabolism.


Association between sarcopenia and frailty in elderly patients with chronic kidney disease.

  • Che Wang‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2023‎

Frailty and sarcopenia are prevalent in chronic kidney disease (CKD) populations and could increase the risk for adverse health outcomes. Few studies assess the correlation between frailty, sarcopenia and CKD in non-dialysis patients. Therefore, this study aimed to determine frailty-associated factors in elderly CKD stage I-IV patients, expected to early identify and intervene in the frailty of elderly CKD patients.


Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells.

  • Yang Lu‎ et al.
  • BMC nephrology‎
  • 2016‎

Dysfunction of renal tubule epithelial cells is associated with renal tubulointerstitial fibrosis. Exploration of the proteomic profiles of senesced tubule epithelial cells is essential to elucidate the mechanism of tubulointerstitium development.


Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6.

  • Nan Wang‎ et al.
  • PloS one‎
  • 2012‎

Mesothelial cell injury plays an important role in peritoneal fibrosis. Present clinical therapies aimed at alleviating peritoneal fibrosis have been largely inadequate. Mesenchymal stem cells (MSCs) are efficient for repairing injuries and reducing fibrosis. This study was designed to investigate the effects of MSCs on injured mesothelial cells and peritoneal fibrosis.


Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury.

  • Lingling Wu‎ et al.
  • PloS one‎
  • 2013‎

The podocyte functions as a glomerular filtration barrier. Autophagy of postmitotic cells is an important protective mechanism that is essential for maintaining the homeostasis of podocytes. Exploring an in vivo rat model of passive Heymann nephritis and an in vitro model of puromycin amino nucleotide (PAN)-cultured podocytes, we examined the specific mechanisms underlying changing autophagy levels and podocyte injury. In the passive Heymann nephritis model rats, the mammalian target-of-rapamycin (mTOR) levels were upregulated in injured podocytes while autophagy was inhibited. In PAN-treated podocytes, mTOR lowered the level of autophagy through the mTOR-ULK1 pathway resulting in damaged podocytes. Rapamycin treatment of these cells reduced podocyte injury by raising the levels of autophagy. These in vivo and in vitro experiments demonstrate that podocyte injury is associated with changes in autophagy levels, and that rapamycin can reduce podocyte injury by increasing autophagy levels via inhibition of the mTOR-ULK1 pathway. These results provide an important theoretical basis for future treatment of diseases involving podocyte injury.


Cardiovascular metabolic risk factors and glomerular filtration rate: a rural Chinese population study.

  • Wei Zheng‎ et al.
  • Lipids in health and disease‎
  • 2016‎

A total of 2426 study subjects from rural China aged 35 years and above (934 men and 1492 women) were enrolled in a cross-sectional survey. The eGFR calculation was based on the Modification of Diet in Renal Disease (MDRD) equation. The strength of the association between cardiovascular metabolic risk factors and eGFR was analyzed using a linear regression model.


Mesangial Cells Exhibit Features of Antigen-Presenting Cells and Activate CD4+ T Cell Responses.

  • Hongyu Yu‎ et al.
  • Journal of immunology research‎
  • 2019‎

Mesangial cells play a prominent role in the development of inflammatory diseases and autoimmune disorders of the kidney. Mesangial cells perform the essential functions of helping to ensure that the glomerular structure is stable and regulating capillary flow, and activated mesangial cells acquire proinflammatory activities. We investigated whether activated mesangial cells display immune properties and control the development of T cell immunity.


The combination of metformin and 2-deoxyglucose significantly inhibits cyst formation in miniature pigs with polycystic kidney disease.

  • Xiaoying Lian‎ et al.
  • British journal of pharmacology‎
  • 2019‎

The pathogenic mechanism of autosomal dominant polycystic kidney disease (ADPKD) is unclear. Similar to tumour cells, polycystic kidney cells are primarily dependent on aerobic glycolysis for ATP production. Compared with rodents, miniature pigs are more similar to humans. This study is the first time to investigate the effects of the combination of metformin and 2-deoxyglucose (2DG) in a pig model of chronic progressive ADPKD.


High Concentrations of Uric Acid and Angiotensin II Act Additively to Produce Endothelial Injury.

  • Quan Hong‎ et al.
  • Mediators of inflammation‎
  • 2020‎

Renin angiotensin (Ang) system (RAS) activation in metabolic syndrome (MS) patients is associated with elevated uric acid (UA) levels, resulting in endothelial system dysfunction. Our previous study demonstrated that excessive UA could cause endothelial injury through the aldose reductase (AR) pathway. This study is the first to show that a high concentration of Ang II in human umbilical vein endothelial cells (HUVECs) increases reactive oxygen species (ROS) components, including O2 ·- and H2O2, and further aggravates endothelial system injury induced by high UA (HUA). In a MS/hyperuricemia model, nitric oxide (NO) production was decreased, followed by a decrease in total antioxidant capacity (TAC), and the concentration of the endothelial injury marker von Willebrand factor (vWF) in the serum was increased. Treatment with catalase and polyethylene glycol covalently linked to superoxide dismutase (PEG-SOD) to individually remove H2O2 and O2 ·- or treatment with the AR inhibitor epalrestat decreased ROS and H2O2, increased NO levels and TAC, and reduced vWF release. Taken together, these data indicate that HUA and Ang II act additively to cause endothelial dysfunction via oxidative stress, and specific elimination of O2 ·- and H2O2 improves endothelial function. We provide theoretical evidence to prevent or delay endothelial injury caused by metabolic diseases.


Mesenchymal Stem Cells Loaded with Gelatin Microcryogels Attenuate Renal Fibrosis.

  • Xiaodong Geng‎ et al.
  • BioMed research international‎
  • 2019‎

The treatment of chronic kidney diseases (CKDs) by different approaches using mesenchymal stem cells (MSCs) has made great strides. In this study, we aimed to explore the potential mechanism of gelatin microcryogels (GMs) as a cell therapeutic vector to block the progression of CKD.


Extracellular vesicles for acute kidney injury in preclinical rodent models: a meta-analysis.

  • Chao Liu‎ et al.
  • Stem cell research & therapy‎
  • 2020‎

Extracellular vesicles (EVs), especially stem cell-derived EVs, have emerged as a potential novel therapy for acute kidney injury (AKI). However, their effects remain incompletely understood. Therefore, we performed this meta-analysis to systematically review the efficacy of EVs on AKI in preclinical rodent models.


The practicality of different eGFR equations in centenarians and near-centenarians: which equation should we choose?

  • Qiuxia Han‎ et al.
  • PeerJ‎
  • 2020‎

No studies have examined the practicality of the Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiological Collaboration (CKD-EPI) and Berlin Initiative Study 1 (BIS1) equations for the estimated glomerular filtration rate (eGFR) in a large sample of centenarians. We aim to investigate the differences among the equations and suggest the most suitable equation for centenarians and near-centenarians.


Activated mesangial cells induce glomerular endothelial cells proliferation in rat anti-Thy-1 nephritis through VEGFA/VEGFR2 and Angpt2/Tie2 pathway.

  • Yinghua Zhao‎ et al.
  • Cell proliferation‎
  • 2021‎

We aimed to investigate the underlying mechanism of endothelial cells (ECs) proliferation in anti-Thy-1 nephritis.


Modulation of transforming growth factor-β-induced kidney fibrosis by leucine-rich ⍺-2 glycoprotein-1.

  • Quan Hong‎ et al.
  • Kidney international‎
  • 2022‎

Kidney fibrosis is considered the final convergent pathway for progressive chronic kidney diseases, but there is still a paucity of success in clinical application for effective therapy. We recently demonstrated that the expression of secreted leucine-rich α-2 glycoprotein-1 (LRG1) is associated with worsened kidney outcomes in patients with type 2 diabetes and that LRG1 enhances endothelial transforming growth factor-β signaling to promote diabetic kidney disease progression. While the increased expression of LRG1 was most prominent in the glomerular endothelial cells in diabetic kidneys, its increase was also observed in the tubulointerstitial compartment. Here, we explored the potential role of LRG1 in kidney epithelial cells and TGF-β-mediated tubulointerstitial fibrosis independent of diabetes. LRG1 expression was induced by tumor necrosis factor-α in cultured kidney epithelial cells and potentiated TGF-β/Smad3 signal transduction. Global Lrg1 loss in mice led to marked attenuation of tubulointerstitial fibrosis in models of unilateral ureteral obstruction and aristolochic acid fibrosis associated with concomitant decreases in Smad3 phosphorylation in tubule epithelial cells. In mice with kidney epithelial cell-specific LRG1 overexpression, while no significant phenotypes were observed at baseline, marked exacerbation of tubulointerstitial fibrosis was observed in the obstructed kidneys. This was associated with enhanced Smad3 phosphorylation in both kidney epithelial cells and α-smooth muscle actin-positive interstitial cells. Co-culture of kidney epithelial cells with primary kidney fibroblasts confirmed the potentiation of TGF-β-mediated Smad3 activation in kidney fibroblasts through epithelial-derived LRG1. Thus, our results indicate that enhanced LRG1 expression-induced epithelial injury is an amplifier of TGF-β signaling in autocrine and paracrine manners promoting tubulointerstitial fibrosis. Hence, therapeutic targeting of LRG1 may be an effective means to curtail kidney fibrosis progression in chronic kidney disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: