2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Akabane virus nonstructural protein NSm regulates viral growth and pathogenicity in a mouse model.

  • Yukari Ishihara‎ et al.
  • The Journal of veterinary medical science‎
  • 2016‎

The biological function of a nonstructural protein, NSm, of Akabane virus (AKAV) is unknown. In this study, we generated a series of NSm deletion mutant viruses by reverse genetics and compared their phenotypes. The mutant in which the NSm coding region was almost completely deleted could not be rescued, suggesting that NSm plays a role in virus replication. We next generated mutant viruses possessing various partial deletions in NSm and identified several regions critical for virus infectivity. All rescued mutant viruses produced smaller plaques and grew inefficiently in cell culture, compared to the wild-type virus. Interestingly, although the pathogenicity of NSm deletion mutant viruses varied in mice depending on their deletion regions and sizes, more than half the mice died following infection with any mutant virus and the dead mice exhibited encephalitis as in wild-type virus-inoculated mice, indicating their neuroinvasiveness. Abundant viral antigens were detected in the brain tissues of dead mice, whereas appreciable antigen was not observed in those of surviving mice, suggesting a correlation between virus growth rate in the brain and neuropathogenicity in mice. We conclude that NSm affects AKAV replication in vitro as well as in vivo and that it may function as a virulence factor.


PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B.

  • Takeshi Satoh‎ et al.
  • Cell‎
  • 2008‎

Glycoprotein B (gB) is one of the essential components for infection by herpes simplex virus-1 (HSV-1). Although several cellular receptors that associate with glycoprotein D (gD), such as herpes virus entry mediator (HVEM) and Nectin-1, have been identified, specific molecules that mediate HSV-1 infection by associating with gB have not been elucidated. Here, we found that paired immunoglobulin-like type 2 receptor (PILR) alpha associates with gB, and cells transduced with PILRalpha become susceptible to HSV-1 infection. Furthermore, HSV-1 infection of human primary cells expressing both HVEM and PILRalpha was blocked by either anti-PILRalpha or anti-HVEM antibody. Our results demonstrate that cellular receptors for both gB and gD are required for HSV-1 infection and that PILRalpha plays an important role in HSV-1 infection as a coreceptor that associates with gB. These findings uncover a crucial aspect of the mechanism underlying HSV-1 infection.


Fourth mRNA vaccination increases cross-neutralizing antibody titers against SARS-CoV-2 variants, including BQ.1.1 and XBB, in a very elderly population.

  • Silvia Sutandhio‎ et al.
  • Journal of infection and public health‎
  • 2023‎

Omicron variants with immune evasion have emerged, and they continue to mutate rapidly, raising concerns about the weakening of vaccine efficacy, and the very elderly populations are vulnerable to Coronavirus Disease 2019 (COVID-19). Therefore, to investigate the effect of multiple doses of mRNA vaccine for the newly emerged variants on these populations, cross-neutralizing antibody titers were examined against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, including BQ.1.1 and XBB.


Identification and Analysis of Monoclonal Antibodies with Neutralizing Activity against Diverse SARS-CoV-2 Variants.

  • Hanako Ishimaru‎ et al.
  • Journal of virology‎
  • 2023‎

We identified neutralizing monoclonal antibodies against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants (including Omicron variants BA.5 and BA.2.75) from individuals who received two doses of mRNA vaccination after they had been infected with the D614G virus. We named them MO1, MO2, and MO3. Among them, MO1 showed particularly high neutralizing activity against authentic variants: D614G, Delta, BA.1, BA.1.1, BA.2, BA.2.75, and BA.5. Furthermore, MO1 suppressed BA.5 infection in hamsters. A structural analysis revealed that MO1 binds to the conserved epitope of seven variants, including Omicron variants BA.5 and BA.2.75, in the receptor-binding domain of the spike protein. MO1 targets an epitope conserved among Omicron variants BA.1, BA.2, and BA.5 in a unique binding mode. Our findings confirm that D614G-derived vaccination can induce neutralizing antibodies that recognize the epitopes conserved among the SARS-CoV-2 variants. IMPORTANCE Omicron variants of SARS-CoV-2 acquired escape ability from host immunity and authorized antibody therapeutics and thereby have been spreading worldwide. We reported that patients infected with an early SARS-CoV-2 variant, D614G, and who received subsequent two-dose mRNA vaccination have high neutralizing antibody titer against Omicron lineages. It was speculated that the patients have neutralizing antibodies broadly effective against SARS-CoV-2 variants by targeting common epitopes. Here, we explored human monoclonal antibodies from B cells of the patients. One of the monoclonal antibodies, named MO1, showed high potency against broad SARS-CoV-2 variants including BA.2.75 and BA.5 variants. The results prove that monoclonal antibodies that have common neutralizing epitopes among several Omicrons were produced in patients infected with D614G and who received mRNA vaccination.


Angiomotin functions in HIV-1 assembly and budding.

  • Gaelle Mercenne‎ et al.
  • eLife‎
  • 2015‎

Many retroviral Gag proteins contain PPXY late assembly domain motifs that recruit proteins of the NEDD4 E3 ubiquitin ligase family to facilitate virus release. Overexpression of NEDD4L can also stimulate HIV-1 release but in this case the Gag protein lacks a PPXY motif, suggesting that NEDD4L may function through an adaptor protein. Here, we demonstrate that the cellular protein Angiomotin (AMOT) can bind both NEDD4L and HIV-1 Gag. HIV-1 release and infectivity are stimulated by AMOT overexpression and inhibited by AMOT depletion, whereas AMOT mutants that cannot bind NEDD4L cannot function in virus release. Electron microscopic analyses revealed that in the absence of AMOT assembling Gag molecules fail to form a fully spherical enveloped particle. Our experiments indicate that AMOT and other motin family members function together with NEDD4L to help complete immature virion assembly prior to ESCRT-mediated virus budding.


Seroepidemiological Survey of the Antibody for Severe Acute Respiratory Syndrome Coronavirus 2 with Neutralizing Activity at Hospitals: A Cross-sectional Study in Hyogo Prefecture, Japan.

  • Koichi Furukawa‎ et al.
  • JMA journal‎
  • 2021‎

The coronavirus disease 2019 (COVID-19) pandemic is spreading rapidly all over the world. The Japanese government lifted the state of emergency, announced in April 2020, on May 25, but there are still sporadic clusters. Asymptomatic patients who can transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause some of these clusters. It is thus urgent to investigate the seroprevalence of antibodies against SARS-CoV-2 and their neutralizing activity. We conducted a cross-sectional study of >10,000 samples at hospitals in Hyogo Prefecture, Japan.


Ubiquitin-specific protease 9X in host cells interacts with herpes simplex virus 1 ICP0.

  • Yuka Sato‎ et al.
  • The Journal of veterinary medical science‎
  • 2016‎

Herpes simplex virus 1 (HSV-1) expresses infected cell protein 0 (ICP0), a multi-functional protein with E3 ubiquitin ligase activity and a critical regulator of the viral life cycle. To obtain novel insights into the molecular mechanism by which ICP0 regulates HSV-1 replication, we analyzed HEp-2 cells infected with HSV-1 by tandem affinity purification and mass spectrometry-based proteomics. This screen identified 50 host-cell proteins that potentially interact with ICP0, including ubiquitin-specific protease 9X (USP9X). The interaction between ICP0 and USP9X was confirmed by co-immunoprecipitation. Notably, USP9X depletion increased the ICP0 abundance and promoted viral replication. These results suggest that USP9X-dependent regulation of ICP0 expression is part of a complex feedback mechanism that facilitates optimal HSV-1 replication.


Us3 kinase encoded by herpes simplex virus 1 mediates downregulation of cell surface major histocompatibility complex class I and evasion of CD8+ T cells.

  • Takahiko Imai‎ et al.
  • PloS one‎
  • 2013‎

Detection and elimination of virus-infected cells by CD8(+) cytotoxic T lymphocytes (CTLs) depends on recognition of virus-derived peptides presented by major histocompatibility complex class I (MHC-I) molecules on the surface of infected cells. In the present study, we showed that inactivation of the activity of viral kinase Us3 encoded by herpes simplex virus 1 (HSV-1), the etiologic agent of several human diseases and a member of the alphaherpesvirinae, significantly increased cell surface expression of MHC-I, thereby augmenting CTL recognition of infected cells in vitro. Overexpression of Us3 by itself had no effect on cell surface expression of MHC-I and Us3 was not able to phosphorylate MHC-I in vitro, suggesting that Us3 indirectly downregulated cell surface expression of MHC-I in infected cells. We also showed that inactivation of Us3 kinase activity induced significantly more HSV-1-specific CD8(+) T cells in mice. Interestingly, depletion of CD8(+) T cells in mice significantly increased replication of a recombinant virus encoding a kinase-dead mutant of Us3, but had no effect on replication of a recombinant virus in which the kinase-dead mutation was repaired. These results indicated that Us3 kinase activity is required for efficient downregulation of cell surface expression of MHC-I and mediates evasion of HSV-1-specific CD8(+) T cells. Our results also raised the possibility that evasion of HSV-1-specific CD8(+) T cells by HSV-1 Us3-mediated inhibition of MHC-I antigen presentation might in part contribute to viral replication in vivo.


Cross-Neutralizing Activity Against SARS-CoV-2 Variants in COVID-19 Patients: Comparison of 4 Waves of the Pandemic in Japan.

  • Koichi Furukawa‎ et al.
  • Open forum infectious diseases‎
  • 2021‎

As of March 2021, Japan is facing a fourth wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To prevent further spread of infection, sera cross-neutralizing activity of patients previously infected with conventional SARS-CoV-2 against novel variants is important but has not been firmly established.


Bat coronaviruses and experimental infection of bats, the Philippines.

  • Shumpei Watanabe‎ et al.
  • Emerging infectious diseases‎
  • 2010‎

Fifty-two bats captured during July 2008 in the Philippines were tested by reverse transcription-PCR to detect bat coronavirus (CoV) RNA. The overall prevalence of virus RNA was 55.8%. We found 2 groups of sequences that belonged to group 1 (genus Alphacoronavirus) and group 2 (genus Betacoronavirus) CoVs. Phylogenetic analysis of the RNA-dependent RNA polymerase gene showed that groups 1 and 2 CoVs were similar to Bat-CoV/China/A515/2005 (95% nt sequence identity) and Bat-CoV/HKU9-1/China/2007 (83% identity), respectively. To propagate group 2 CoVs obtained from a lesser dog-faced fruit bat (Cynopterus brachyotis), we administered intestine samples orally to Leschenault rousette bats (Rousettus leschenaulti) maintained in our laboratory. After virus replication in the bats was confirmed, an additional passage of the virus was made in Leschenault rousette bats, and bat pathogenesis was investigated. Fruit bats infected with virus did not show clinical signs of infection.


Identification of a herpes simplex virus 1 gene encoding neurovirulence factor by chemical proteomics.

  • Akihisa Kato‎ et al.
  • Nature communications‎
  • 2020‎

Identification of the complete set of translated genes of viruses is important to understand viral replication and pathogenesis as well as for therapeutic approaches to control viral infection. Here, we use chemical proteomics, integrating bio-orthogonal non-canonical amino acid tagging and high-resolution mass spectrometry, to characterize the newly synthesized herpes simplex virus 1 (HSV-1) proteome in infected cells. In these infected cells, host cellular protein synthesis is shut-off, increasing the chance to preferentially detect viral proteomes. We identify nine previously cryptic orphan protein coding sequences whose translated products are expressed in HSV-1-infected cells. Functional characterization of one identified protein, designated piUL49, shows that it is critical for HSV-1 neurovirulence in vivo by regulating the activity of virally encoded dUTPase, a key enzyme that maintains accurate DNA replication. Our results demonstrate that cryptic orphan protein coding genes of HSV-1, and probably other large DNA viruses, remain to be identified.


ESCRT-III controls nuclear envelope deformation induced by progerin.

  • Jun Arii‎ et al.
  • Scientific reports‎
  • 2020‎

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder, caused by mutation in the gene encoding lamin A/C, which produces a truncated protein called progerin. In cells from HGPS patients, progerin accumulates at the nuclear membrane (NM), where it causes NM deformations. In this study, we investigated whether progerin-induced NM deformation involved ESCRT-III, a protein complex that remodels nuclear and cytoplasmic membranes. The ESCRT-III protein CHMP4B was recruited to sites of aberrant NM proliferation in human cells ectopically expressing progerin and in patient-derived HGPS fibroblasts. Derepression of NM deformation in these cells was observed following depletion of CHMP4B or an ESCRT-III adaptor, ALIX. Treatment with rapamycin (which induce autophagic clearance of progerin and reverse progerin-induced cellular phenotypes) down-regulated progerin-induced NM deformation, whereas treatment with bafilomycin A1 (an inhibitor of autophagy and lysosome-based degradation) or CHMP4B depletion antagonized the effects of rapamycin. These results indicate that the ALIX-mediated ESCRT-III pathway plays a suppressive role in progerin-induced NM deformation and suggest that autophagy down-regulates progerin-induced NM deformation in a manner dependent on ESCRT-III machinery.


Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication.

  • Yuhei Maruzuru‎ et al.
  • Cell host & microbe‎
  • 2018‎

The AIM2 inflammasome is activated by DNA, leading to caspase-1 activation and release of pro-inflammatory cytokines interleukin 1β (IL-1β) and IL-18, which are critical mediators in host innate immune responses against various pathogens. Some viruses employ strategies to counteract inflammasome-mediated induction of pro-inflammatory cytokines, but their in vivo relevance is less well understood. Here we show that the herpes simplex virus 1 (HSV-1) tegument protein VP22 inhibits AIM2-dependent inflammasome activation. VP22 interacts with AIM2 and prevents its oligomerization, an initial step in AIM2 inflammasome activation. A mutant virus lacking VP22 (HSV-1ΔVP22) activates AIM2 and induces IL-1β and IL-18 secretion, but these responses are lost in the absence of AIM2. Additionally, HSV-1ΔVP22 infection results in diminished viral yields in vivo, but HSV-1ΔVP22 replication is largely restored in AIM2-deficient mice. Collectively, these findings reveal a mechanism of HSV-1 evasion of the host immune response that enables efficient viral replication in vivo.


Cross-Neutralizing Breadth and Longevity Against SARS-CoV-2 Variants After Infections.

  • Yukiya Kurahashi‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. The emergence of variants of concern (VOCs) has become one of the most pressing issues in public health. To control VOCs, it is important to know which COVID-19 convalescent sera have cross-neutralizing activity against VOCs and how long the sera maintain this protective activity.


ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity.

  • Jun Arii‎ et al.
  • Nature communications‎
  • 2018‎

Vesicle-mediated nucleocytoplasmic transport is a nuclear pore-independent mechanism for the nuclear export of macromolecular complexes, but the molecular basis for this transport remains largely unknown. Here we show that endosomal sorting complex required for transport-III (ESCRT-III) is recruited to the inner nuclear membrane (INM) during the nuclear export of herpes simplex virus 1 (HSV-1). Scission during HSV-1 budding through the INM is prevented by depletion of ESCRT-III proteins. Interestingly, in uninfected human cells, the depletion of ESCRT-III proteins induces aberrant INM proliferation. Our results show that HSV-1 expropriates the ESCRT-III machinery in infected cells for scission of the INM to produce vesicles containing progeny virus nucleocapsids. In uninfected cells, ESCRT-III regulates INM integrity by downregulating excess INM.


Assessment of Neutralizing Antibody Response Against SARS-CoV-2 Variants After 2 to 3 Doses of the BNT162b2 mRNA COVID-19 Vaccine.

  • Koichi Furukawa‎ et al.
  • JAMA network open‎
  • 2022‎

Although 2 and 3 doses of vaccine have been implemented against the SARS-CoV-2 pandemic, the level of immunity achieved by these additional vaccinations remains unclear.


Large-scale serosurveillance of COVID-19 in Japan: Acquisition of neutralizing antibodies for Delta but not for Omicron and requirement of booster vaccination to overcome the Omicron's outbreak.

  • Zhenxiao Ren‎ et al.
  • PloS one‎
  • 2022‎

Continuous appearance of SARS-CoV-2 variants and mass vaccination have been intricately influencing on the COVID-19 situation. To elucidate the current status in Japan, we analyzed totally 2,000 sera in August (n = 1,000) and December (n = 1,000) 2021 collected from individuals who underwent a health check-up. The anti-N seropositive rate were 2.1% and 3.9% in August and December 2021, respectively, demonstrating a Delta variant endemic during that time; it was approximately twofold higher than the rate based on the PCR-based diagnosis. The anti-S seropositive rate was 38.7% in August and it reached 90.8% in December, in concordance with the vaccination rate in Japan. In the December cohort, 78.7% of the sera showed neutralizing activity against the Delta variant, whereas that against the Omicron was much lower at 36.6%. These analyses revealed that effective immunity against the Delta variant was established in December 2021, however, prompt three-dose vaccination is needed to overcome Omicron's outbreak.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: