Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 71 papers

PGE2 EP1 receptor exacerbated neurotoxicity in a mouse model of cerebral ischemia and Alzheimer's disease.

  • Gehua Zhen‎ et al.
  • Neurobiology of aging‎
  • 2012‎

Stroke and Alzheimer's disease (AD) are major age-related neurodegenerative diseases that may worsen the prognosis of each other. Our study was designed to delineate the prostaglandin E(2) EP1 receptor role in AD and in the setting of cerebral ischemia. Genetic deletion of the prostaglandin EP1 receptor significantly attenuated the more severe neuronal damage (38.5 ± 10.6%) and memory loss induced by ischemic insult observed in AD transgenic mice (percentage of viable hippocampal CA1 neurons: 11.2 ± 2.9%) when compared with wild type mice (45.1 ± 9.1%). In addition, we found that the amyloid plaques were reduced in EP1 deleted AD mice. β-amyloid-induced toxicity (18.0 ± 7.1%) and Ca(2+) response (91.8 ± 12.9%) were also reduced in EP1(-/-) neurons compared with control neurons in in vitro. Hence, EP1 might mediate most of the toxicity associated with cyclooxygenase-2 and contribute substantially to the cell death pathways in AD and stroke. Exploring potential therapeutic agent targeting EP1 receptor could potentially benefit treatments for stroke and AD patients.


The intrinsic prostaglandin E2-EP4 system of the renal tubular epithelium limits the development of tubulointerstitial fibrosis in mice.

  • Naoki Nakagawa‎ et al.
  • Kidney international‎
  • 2012‎

Inflammatory responses in the kidney lead to tubulointerstitial fibrosis, a common feature of chronic kidney diseases. Here we examined the role of prostaglandin E(2) (PGE(2)) in the development of tubulointerstitial fibrosis. In the kidneys of wild-type mice, unilateral ureteral obstruction leads to progressive tubulointerstitial fibrosis with macrophage infiltration and myofibroblast proliferation. This was accompanied by an upregulation of COX-2 and PGE(2) receptor subtype EP(4) mRNAs. In the kidneys of EP(4) gene knockout mice, however, obstruction-induced histological alterations were significantly augmented. In contrast, an EP(4)-specific agonist significantly attenuated these alterations in the kidneys of wild-type mice. The mRNAs for macrophage chemokines and profibrotic growth factors were upregulated in the kidneys of wild-type mice after ureteral obstruction. This was significantly augmented in the kidneys of EP(4)-knockout mice and suppressed by the EP(4) agonist but only in the kidneys of wild-type mice. Notably, COX-2 and MCP-1 proteins, as well as EP(4) mRNA, were localized in renal tubular epithelial cells after ureteral obstruction. In cultured renal fibroblasts, another EP(4)-specific agonist significantly inhibited PDGF-induced proliferation and profibrotic connective tissue growth factor production. Hence, an endogenous PGE(2)-EP(4) system in the tubular epithelium limits the development of tubulointerstitial fibrosis by suppressing inflammatory responses.


Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis.

  • Tetsuya Honda‎ et al.
  • The Journal of experimental medicine‎
  • 2006‎

Prostaglandin (PG)I2 (prostacyclin [PGI]) and PGE2 are abundantly present in the synovial fluid of rheumatoid arthritis (RA) patients. Although the role of PGE2 in RA has been well studied, how much PGI2 contributes to RA is little known. To examine this issue, we backcrossed mice lacking the PGI receptor (IP) to the DBA/1J strain and subjected them to collagen-induced arthritis (CIA). IP-deficient (IP-/-) mice exhibited significant reduction in arthritic scores compared with wild-type (WT) mice, despite anti-collagen antibody production and complement activation similar to WT mice. IP-/- mice also showed significant reduction in contents of proinflammatory cytokines, such as interleukin (IL)-6 in arthritic paws. Consistently, the addition of an IP agonist to cultured synovial fibroblasts significantly enhanced IL-6 production and induced expression of other arthritis-related genes. On the other hand, loss or inhibition of each PGE receptor subtype alone did not affect elicitation of inflammation in CIA. However, a partial but significant suppression of CIA was achieved by the combined inhibition of EP2 and EP4. Our results show significant roles of both PGI2-IP and PGE2-EP2/EP4 signaling in the development of CIA, and suggest that inhibition of PGE2 synthesis alone may not be sufficient for suppression of RA symptoms.


Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis.

  • Fabian Oceguera-Yanez‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Although Rho regulates cytokinesis, little was known about the functions in mitosis of Cdc42 and Rac. We recently suggested that Cdc42 works in metaphase by regulating bi-orient attachment of spindle microtubules to kinetochores. We now confirm the role of Cdc42 by RNA interference and identify the mechanisms for activation and down-regulation of Cdc42. Using a pull-down assay, we found that the level of GTP-Cdc42 elevates in metaphase, whereas the level of GTP-Rac does not change significantly in mitosis. Overexpression of dominant-negative mutants of Ect2 and MgcRacGAP, a Rho GTPase guanine nucleotide exchange factor and GTPase activating protein, respectively, or depletion of Ect2 by RNA interference suppresses this change of GTP-Cdc42 in mitosis. Depletion of Ect2 also impairs microtubule attachment to kinetochores and causes prometaphase delay and abnormal chromosomal segregation, as does depletion of Cdc42 or expression of the Ect2 and MgcRacGAP mutants. These results suggest that Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis.


Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells.

  • Hamida Hammad‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

Prostaglandins (PGs) can enhance or suppress inflammation by acting on different receptors expressed by hematopoietic and nonhematopoietic cells. Prostaglandin D(2) binds to the D prostanoid (DP)1 and DP2 receptor and is seen as a critical mediator of asthma causing vasodilation, bronchoconstriction, and inflammatory cell influx. Here we show that inhalation of a selective DP1 agonist suppresses the cardinal features of asthma by targeting the function of lung dendritic cells (DCs). In mice treated with DP1 agonist or receiving DP1 agonist-treated DCs, there was an increase in Foxp3(+) CD4(+) regulatory T cells that suppressed inflammation in an interleukin 10-dependent way. These effects of DP1 agonist on DCs were mediated by cyclic AMP-dependent protein kinase A. We furthermore show that activation of DP1 by an endogenous ligand inhibits airway inflammation as chimeric mice with selective hematopoietic loss of DP1 had strongly enhanced airway inflammation and antigen-pulsed DCs lacking DP1 were better at inducing airway T helper 2 responses in the lung. Triggering DP1 on DCs is an important mechanism to induce regulatory T cells and to control the extent of airway inflammation. This pathway could be exploited to design novel treatments for asthma.


Actin turnover-dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing.

  • Takushi Miyoshi‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Actin forms the dendritic nucleation network and undergoes rapid polymerization-depolymerization cycles in lamellipodia. To elucidate the mechanism of actin disassembly, we characterized molecular kinetics of the major filament end-binding proteins Arp2/3 complex and capping protein (CP) using single-molecule speckle microscopy. We have determined the dissociation rates of Arp2/3 and CP as 0.048 and 0.58 s(-1), respectively, in lamellipodia of live XTC fibroblasts. This CP dissociation rate is three orders of magnitude faster than in vitro. CP dissociates slower from actin stress fibers than from the lamellipodial actin network, suggesting that CP dissociation correlates with actin filament dynamics. We found that jasplakinolide, an actin depolymerization inhibitor, rapidly blocked the fast CP dissociation in cells. Consistently, the coexpression of LIM kinase prolonged CP speckle lifetime in lamellipodia. These results suggest that cofilin-mediated actin disassembly triggers CP dissociation from actin filaments. We predict that filament severing and end-to-end annealing might take place fairly frequently in the dendritic nucleation actin arrays.


Repeated social defeat stress impairs attentional set shifting irrespective of social avoidance and increases female preference associated with heightened anxiety.

  • Shu Higashida‎ et al.
  • Scientific reports‎
  • 2018‎

Repeated social defeat stress (R-SDS) induces multiple behavioral changes in mice. However, the relationships between these behavioral changes were not fully understood. In the first experiment, to examine how the social avoidance is related to R-SDS-impaired behavioral flexibility, 10-week-old male C57BL/6N mice received R-SDS followed by the social interaction test and the attentional set shifting task. R-SDS impaired attentional set shifting irrespective of the development of social avoidance. In the second experiment, to examine whether R-SDS affects sexual preference and how this behavioral change is related to the social avoidance and R-SDS-heightened anxiety, another group of 10-week-old male C57BL/6N mice were subjected to R-SDS followed by the social interaction test, the female encounter test and the elevated plus maze test. The anxiety was heightened in the defeated mice without social avoidance, but not in those which showed social avoidance. Furthermore, female preference was increased specifically in the defeated mice which showed heightened anxiety, but was not related to the level of social avoidance. Together, these results showed that attentional set shifting is more sensitive to R-SDS than social interaction, and that female preference is affected by R-SDS in association with heightened anxiety rather than the social avoidance.


mDia1/3 generate cortical F-actin meshwork in Sertoli cells that is continuous with contractile F-actin bundles and indispensable for spermatogenesis and male fertility.

  • Satoko Sakamoto‎ et al.
  • PLoS biology‎
  • 2018‎

Formin is one of the two major classes of actin binding proteins (ABPs) with nucleation and polymerization activity. However, despite advances in our understanding of its biochemical activity, whether and how formins generate specific architecture of the actin cytoskeleton and function in a physiological context in vivo remain largely obscure. It is also unknown how actin filaments generated by formins interact with other ABPs in the cell. Here, we combine genetic manipulation of formins mammalian diaphanous homolog1 (mDia1) and 3 (mDia3) with superresolution microscopy and single-molecule imaging, and show that the formins mDia1 and mDia3 are dominantly expressed in Sertoli cells of mouse seminiferous tubule and together generate a highly dynamic cortical filamentous actin (F-actin) meshwork that is continuous with the contractile actomyosin bundles. Loss of mDia1/3 impaired these F-actin architectures, induced ectopic noncontractile espin1-containing F-actin bundles, and disrupted Sertoli cell-germ cell interaction, resulting in impaired spermatogenesis. These results together demonstrate the previously unsuspected mDia-dependent regulatory mechanism of cortical F-actin that is indispensable for mammalian sperm development and male fertility.


Prostaglandin E2 stimulates adaptive IL-22 production and promotes allergic contact dermatitis.

  • Calum T Robb‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2018‎

Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are both forms of eczema and are common inflammatory skin diseases with a central role of T cell-derived IL-22 in their pathogenesis. Although prostaglandin (PG) E2 is known to promote inflammation, little is known about its role in processes related to AD and ACD development, including IL-22 upregulation.


Eicosanoid signaling as a therapeutic target in middle-aged mice with severe COVID-19.

  • Lok-Yin Roy Wong‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2021‎

Coronavirus disease 2019 (COVID-19) is especially severe in aged populations 1 . Resolution of the COVID-19 pandemic has been advanced by the recent development of SARS-CoV-2 vaccines, but vaccine efficacy is partly compromised by the recent emergence of SARS-CoV-2 variants with enhanced transmissibility 2 . The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially in aged populations. Here, we describe the isolation of a new set of highly virulent mouse-adapted viruses and use them to test a novel therapeutic drug useful in infections of aged animals. Initially, we show that many of the mutations observed in SARS-CoV-2 during mouse adaptation (at positions 417, 484, 501 of the spike protein) also arise in humans in variants of concern (VOC) 2 . Their appearance during mouse adaptation indicates that immune pressure is not required for their selection. Similar to the human infection, aged mice infected with mouse-adapted SARS-CoV-2 develop more severe disease than young mice. In murine SARS, in which severity is also age-dependent, we showed that elevated levels of an eicosanoid, prostaglandin D2 (PGD 2 ) and of a phospholipase, PLA 2 G2D, contributed to poor outcomes in aged mice 3,4 . Using our virulent mouse-adapted SARS-CoV-2, we show that infection of middle-aged mice lacking expression of DP1, a PGD 2 receptor, or PLA 2 G2D are protected from severe disease. Further, treatment with a DP1 antagonist, asapiprant, protected aged mice from a lethal infection. DP1 antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, and demonstrates that the PLA 2 G2D-PGD 2 /DP1 pathway is a useful target for therapeutic interventions. (Words: 254).


The role of thromboxane prostanoid receptor signaling in gastric ulcer healing.

  • Sakiko Yamane‎ et al.
  • International journal of experimental pathology‎
  • 2022‎

The process of gastric ulcer healing includes cell migration, proliferation, angiogenesis and re-epithelialization. Platelets contain angiogenesis stimulating factors that induce angiogenesis. Thromboxane A2 (TXA2 ) not only induces platelet activity but also angiogenesis. This study investigated the role of TXA2 in gastric ulcer healing using TXA2 receptor knockout (TPKO) mice. Gastric ulcer healing was suppressed by treatment with the TXA2 synthase inhibitor OKY-046 and the TXA2 receptor antagonist S-1452 compared with vehicle-treated mice. TPKO showed delayed gastric ulcer healing compared with wild-type mice (WT). The number of microvessels and CD31 expression were lower in TPKO than in WT mice, and TPKO suppressed the expression of transforming growth factor beta (TGF-β) and vascular endothelial growth factor A (VEGF-A) in areas around gastric ulcers. Immunofluorescence assays showed that TGF-β and VEGF-A co-localized with platelets. Gastric ulcer healing was significantly reduced in WT mice transplanted with TPKO compared with WT bone marrow. These results suggested that TP signalling on platelets facilitates gastric ulcer healing through TGF-β and VEGF-A.


ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts.

  • Takahiro Tsuji‎ et al.
  • The Journal of cell biology‎
  • 2002‎

The small GTPase Rho acts on two effectors, ROCK and mDia1, and induces stress fibers and focal adhesions. However, how ROCK and mDia1 individually regulate signals and dynamics of these structures remains unknown. We stimulated serum-starved Swiss 3T3 fibroblasts with LPA and compared the effects of C3 exoenzyme, a Rho inhibitor, with those of Y-27632, a ROCK inhibitor. Y-27632 treatment suppressed LPA-induced formation of stress fibers and focal adhesions as did C3 exoenzyme but induced membrane ruffles and focal complexes, which were absent in the C3 exoenzyme-treated cells. This phenotype was suppressed by expression of N17Rac. Consistently, the amount of GTP-Rac increased significantly by Y-27632 in LPA-stimulated cells. Biochemically, Y-27632 suppressed tyrosine phosphorylation of paxillin and focal adhesion kinase and not that of Cas. Inhibition of Cas phosphorylation with PP1 or expression of a dominant negative Cas mutant inhibited Y-27632-induced membrane ruffle formation. Moreover, Crk-II mutants lacking in binding to either phosphorylated Cas or DOCK180 suppressed the Y-27632-induced membrane ruffle formation. Finally, expression of a dominant negative mDia1 mutant also inhibited the membrane ruffle formation by Y-27632. Thus, these results have revealed the Rho-dependent Rac activation signaling that is mediated by mDia1 through Cas phosphorylation and antagonized by the action of ROCK.


Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth.

  • Hideki Amano‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Nonsteroidal antiinflammatories are known to suppress incidence and progression of malignancies including colorectal cancers. However, the precise mechanism of this action remains unknown. Using prostaglandin (PG) receptor knockout mice, we have evaluated a role of PGs in tumor-associated angiogenesis and tumor growth, and identified PG receptors involved. Sarcoma-180 cells implanted in wild-type (WT) mice formed a tumor with extensive angiogenesis, which was greatly suppressed by specific inhibitors for cyclooxygenase (COX)-2 but not for COX-1. Angiogenesis in sponge implantation model, which can mimic tumor-stromal angiogenesis, was markedly suppressed in mice lacking EP3 (EP3(-/-)) with reduced expression of vascular endothelial growth factor (VEGF) around the sponge implants. Further, implanted tumor growth (sarcoma-180, Lewis lung carcinoma) was markedly suppressed in EP3(-/-), in which tumor-associated angiogenesis was also reduced. Immunohistochemical analysis revealed that major VEGF-expressing cells in the stroma were CD3/Mac-1 double-negative fibroblasts, and that VEGF-expression in the stroma was markedly reduced in EP3(-/-), compared with WT. Application of an EP3 receptor antagonist inhibited tumor growth and angiogenesis in WT, but not in EP3(-/-). These results demonstrate significance of host stromal PGE(2)-EP3 receptor signaling in tumor development and angiogenesis. An EP3 receptor antagonist may be a candidate of chemopreventive agents effective for malignant tumors.


Contribution of PGE2 EP1 receptor in hemin-induced neurotoxicity.

  • Shekher Mohan‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2013‎

Although hemin-mediated neurotoxicity has been linked to the production of free radicals and glutamate excitotoxicity, the role of the prostaglandin E2 (PGE2)-EP1 receptor remains unclear. Activation of the EP1 receptor in neurons results in increased intracellular calcium levels; therefore, we hypothesize that the blockade of the EP1 receptor reduces hemin neurotoxicity. Using postnatal primary cortical neurons cultured from wild-type (WT) and EP1(-/-) mice, we investigated the EP1 receptor role in hemin neurotoxicity measured by lactate dehydrogenase (LDH) cell survival assay. Hemin (75 μM) induced greater release of LDH in WT (34.7 ± 4.5%) than in EP1(-/-) (27.6 ± 3.3%) neurons. In the presence of the EP1 receptor antagonist SC-51089, the hemin-induced release of LDH decreased. To further investigate potential mechanisms of action, we measured changes in the intracellular calcium level [Ca(2+)]i following treatment with 17-phenyl trinor PGE2 (17-pt-PGE2) a selective EP1 agonist. In the WT neurons, 17-pt-PGE2 dose-dependently increased [Ca(2+)]i. However, in EP1(-/-) neurons, [Ca(2+)]i was significantly attenuated. We also revealed that hemin dose-dependently increased [Ca(2+)]i in WT neurons, with a significant decrease in EP1(-/-) neurons. Both 17-pt-PGE2 and hemin-induced [Ca(2+)]i were abolished by N-methyl-D-aspartic (NMDA) acid receptor and ryanodine receptor blockers. These results suggest that blockade of the EP1 receptor may be protective against hemin neurotoxicity in vitro. We speculate that the mechanism of hemin neuronal death involves [Ca(2+)]i mediated by NMDA acid receptor-mediated extracellular Ca(2+) influx and EP1 receptor-mediated intracellular release from ryanodine receptor-operated Ca(2+) stores. Therefore, blockade of the EP1 receptor could be used to minimize neuronal damage following exposure to supraphysiological levels of hemin.


Prostaglandin E₂ promotes Th1 differentiation via synergistic amplification of IL-12 signalling by cAMP and PI3-kinase.

  • Chengcan Yao‎ et al.
  • Nature communications‎
  • 2013‎

T helper 1 (Th1) cells have critical roles in various autoimmune and proinflammatory diseases. cAMP has long been believed to act as a suppressor of IFN-γ production and Th1 cell-mediated immune inflammation. Here we show that cAMP actively promotes Th1 differentiation by inducing gene expression of cytokine receptors involved in this process. PGE2 signalling through EP2/EP4 receptors mobilizes the cAMP-PKA pathway, which induces CREB- and its co-activator CRTC2-mediated transcription of IL-12Rβ2 and IFN-γR1. Meanwhile, cAMP-mediated suppression of T-cell receptor signalling is overcome by simultaneous activation of PI3-kinase through EP2/EP4 and/or CD28. Loss of EP4 in T cells restricts expression of IL-12Rβ2 and IFN-γR1, and attenuates Th1 cell-mediated inflammation in vivo. These findings clarify the molecular mechanisms and pathological contexts of cAMP-mediated Th1 differentiation and have clinical and therapeutic implications for deployment of cAMP modulators as immunoregulatory drugs.


Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma.

  • Kohei Ikezoe‎ et al.
  • Scientific reports‎
  • 2016‎

Oxidative stress plays a pivotal role in the pathogenesis of asthma. Aquaporin-3 (AQP3) is a small transmembrane water/glycerol channel that may facilitate the membrane uptake of hydrogen peroxide (H2O2). Here we report that AQP3 potentiates ovalbumin (OVA)-induced murine asthma by mediating both chemokine production from alveolar macrophages and T cell trafficking. AQP3 deficient (AQP3(-/-)) mice exhibited significantly reduced airway inflammation compared to wild-type mice. Adoptive transfer experiments showed reduced airway eosinophilic inflammation in mice receiving OVA-sensitized splenocytes from AQP3(-/-) mice compared with wild-type mice after OVA challenge, consistently with fewer CD4(+) T cells from AQP3(-/-) mice migrating to the lung than from wild-type mice. Additionally, in vivo and vitro experiments indicated that AQP3 induced the production of some chemokines such as CCL24 and CCL22 through regulating the amount of cellular H2O2 in M2 polarized alveolar macrophages. These results imply a critical role of AQP3 in asthma, and AQP3 may be a novel therapeutic target.


T cell function is dispensable for intracranial aneurysm formation and progression.

  • Haruka Miyata‎ et al.
  • PloS one‎
  • 2017‎

Given the social importance of intracranial aneurysm as a major cause of a lethal subarachnoid hemorrhage, clarification of mechanisms underlying the pathogenesis of this disease is essential for improving poor prognosis once after rupture. Previous histopathological analyses of human aneurysm walls have revealed the presence of T cells in lesions suggesting involvement of this type of cell in the pathogenesis. However, it remains unclear whether T cell actively participates in intracranial aneurysm progression. To examine whether T cell is involved in aneurysm progression, intracranial aneurysm model of rat was used. In this model, aneurysm is induced by increase in hemodynamic force loaded on bifurcation site of intracranial arteries where aneurysms are developed. Deficiency in T cells and pharmacological inhibition of T cell function were applied to this model. CD3-positive T cells were present in human aneurysm walls, whose number was significantly larger compared with that in control arterial walls. Deficiency in T cells in rats and pharmacological inhibition of T cell function by oral administration of Cyclosporine A both failed to affect intracranial aneurysm progression, degenerative changes of arterial walls and macrophage infiltration in lesions. Although T cells are detectable in intracranial aneurysm walls, their function is dispensable for macrophage-mediated inflammation and degenerative changes in arterial walls, which presumably leads to intracranial aneurysm progression.


PTGS-2-PTGER2/4 signaling pathway partially protects from diabetogenic toxicity of streptozotocin in mice.

  • Antje Vennemann‎ et al.
  • Diabetes‎
  • 2012‎

Prostanoids are suggested to participate in diabetes pathology, but their roles are controversially discussed. The purpose of the current study was to examine the role of cyclooxygenase (prostaglandin synthase [PTGS]) enzymes and prostaglandin (PG) E(2) signaling pathways in streptozotocin (STZ)-induced type 1 diabetes. Blood glucose, insulin, and survival rate were studied in mice with targeted disruption of the genes for PTGS and PGE receptors (PTGERs). PGE(2) was found as the main prostanoid formed by the pancreas. Contrarily to PTGS-1, deficiency of PTGS-2 activity significantly amplified STZ effect, causing dramatic loss of insulin production and rise in blood glucose and death rate. STZ metabolism was unaffected by PTGS deficiency. Diabetogenicity of STZ in PTGER1(-/-), PTGER2(-/-), PTGER3(-/-), and PTGER4(-/-) mice was comparable to control mice. In striking contrast, combined knockout of PTGER2 and PTGER4 by blocking PTGER4 in PTGER2(-/-) mice strongly enhanced STZ pathology. Treatment of PTGS-2(-/-) and wild-type mice with PTGER2/PTGER4 agonists partially protected against STZ-induced diabetes and restored β-cell function. Our data uncover a previously unrecognized protective role of PTGS-2-derived PGE(2) in STZ-induced diabetes mediated by the receptor types PTGER2 and PTGER4. These findings offer the possibility to intervene in early progression of type 1 diabetes by using PTGER-selective agonists.


The PGE2 EP2 receptor and its selective activation are beneficial against ischemic stroke.

  • Muzamil Ahmad‎ et al.
  • Experimental & translational stroke medicine‎
  • 2010‎

The prostaglandin E2 EP2 receptor has been shown to be important in dictating outcomes in various neuroinflammatory disorders. Here, we investigated the importance of the EP2 receptor in short- and long-term ischemic outcomes by subjecting wildtype (WT) and EP2 knockout (EP2-/-) mice to two distinct and complementary stroke models [transient and permanent middle cerebral artery occlusion (tMCAO and pMCAO)] and by using the EP2 receptor agonist ONO-AE1-259-01.


Control of axon elongation via an SDF-1alpha/Rho/mDia pathway in cultured cerebellar granule neurons.

  • Yoshiki Arakawa‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Rho-GTPase has been implicated in axon outgrowth. However, not all of the critical steps controlled by Rho have been well characterized. Using cultured cerebellar granule neurons, we show here that stromal cell-derived factor (SDF)-1alpha, a neural chemokine, is a physiological ligand that can turn on two distinct Rho-dependent pathways with opposite consequences. A low concentration of the ligand stimulated a Rho-dependent pathway that mediated facilitation of axon elongation. In contrast, Rho/ROCK activation achieved by a higher concentration of SDF-1alpha caused repression of axon formation and induced no more increase in axon length. However, even at this higher concentration a Rho-dependent axon elongating activity could be recovered upon removal of ROCK activity using Y-27632. SDF-1alpha-induced axon elongating activity under ROCK inhibition was replicated by the dominant-active form of the mammalian homologue of the Drosophila gene Diaphanous (mDia)1 and counteracted by its dominant-negative form. Furthermore, RNAi knockdown of mDia1 abolished SDF-1alpha-induced axon elongation. Together, our results support a critical role for an SDF-1alpha/Rho/mDia1 pathway in mediating axon elongation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: