Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 382 papers

The protein P23 identifies capsule-forming plasmatocytes in the moth Pseudoplusia includens.

  • Shu Zhang‎ et al.
  • Developmental and comparative immunology‎
  • 2011‎

The moth Pseudoplusia includens produces four types of hemocytes named granulocytes, plasmatocytes, spherule cells and oenocytoids. Prior studies established that the main function of plasmatocytes in P. includens is encapsulation of parasitoids and other foreign entitites. P. includens plasmatocytes are also recognized by several monoclonal antibodies that bind unknown antigens. Of particular interest is the antibody 43E9A10 whose binding properties indicate that plasmatocytes consist of two subpopulations: cells that can spread on foreign surfaces and cells that cannot. Here we report 43E9A10 recognizes P23, which is a member of the aegerolysin protein family. Expression analyses confirmed that p23 is specifically expressed in plasmatocytes. Functional studies indicated that only P23-expressing plasmatocytes form capsules and spread in response to the cytokine plasmatocyte spreading peptide. In contrast, P23 showed no antibacterial or cytolytic activity toward bacteria and mammalian erythrocytes. Overall, our results suggest that P23 is a maturation marker that identifies capsule-forming plasmatocytes.


High diversity of the fungal community structure in naturally-occurring Ophiocordyceps sinensis.

  • Yongjie Zhang‎ et al.
  • PloS one‎
  • 2010‎

Ophiocordyceps sinensis (syn. Cordyceps sinensis), which is a parasite of caterpillars and is endemic to alpine regions on the Tibetan Plateau, is one of the most valuable medicinal fungi in the world. "Natural O. sinensis specimens" harbor various other fungi. Several of these other fungi that have been isolated from natural O. sinensis specimens have similar chemical components and/or pharmaceutical effects as O. sinensis. Nevertheless, the mycobiota of natural O. sinensis specimens has not been investigated in detail.


Loss-of-function mutations in HPSE2 cause the autosomal recessive urofacial syndrome.

  • Junfeng Pang‎ et al.
  • American journal of human genetics‎
  • 2010‎

Previously, we localized the defective gene for the urofacial syndrome (UFS) to a region on chromosome 10q24 by homozygosity mapping. We now report evidence that Heparanse 2 (HPSE2) is the culprit gene for the syndrome. Mutations with a loss of function in the Heparanase 2 (HPSE2) gene were identified in all UFS patients originating from Colombia, the United States, and France. HPSE2 encodes a 592 aa protein that contains a domain showing sequence homology to the glycosyl hydrolase motif in the heparanase (HPSE) gene, but its exact biological function has not yet been characterized. Complete loss of HPSE2 function in UFS patients suggests that HPSE2 may be important for the synergic action of muscles implicated in facial expression and urine voiding.


Succinate dehydrogenase subunit B inhibits the AMPK-HIF-1α pathway in human ovarian cancer in vitro.

  • Lilan Chen‎ et al.
  • Journal of ovarian research‎
  • 2014‎

Ovarian carcinoma is one of the most common gynecological cancers with high mortality rates. Numerous evidences demonstrate that cancer cells undergo metabolic abnormality during tumorigenesis in tumor microenvironment and further facilitate tumor progression. Succinate dehydrogenase (SDH or Complex II) is one of the important enzymes in the tricarboxylic acid (TCA) cycle. Succinate dehydrogenase subunit B (SDHB) gene, which encodes one of the four subunits of SDH, has been recognized as a tumor suppressor. However the role of SDHB in ovarian cancer is still unclear.


High sensitivity C-reactive protein and cardfiac resynchronization therapy in patients with advanced heart failure.

  • Chi Cai‎ et al.
  • Journal of geriatric cardiology : JGC‎
  • 2014‎

The data on the prognostic values of high sensitivity C-reactive protein (hsCRP) levels in patients with advanced symptomatic heart failure (HF) receiving cardiac resynchronization therapy (CRT) are scarce. The aim of present study was to investigate the association of serum hsCRP levels with left ventricle reverse remodeling after six months of CRT as well as long-term outcome.


Involvement of FoxQ1 in NSCLC through regulating EMT and increasing chemosensitivity.

  • Jian Feng‎ et al.
  • Oncotarget‎
  • 2014‎

Forkhead box Q1 (FoxQ1) is a member of the forkhead transcription factor family. High expression of FoxQ1 has been associated with several cancers including non-small cell lung cancer (NSCLC), but its role in the development of NSCLC is not clear. In this study, we investigated the effect of FoxQ1 up-regulated and down-regulated in vitro and in vivo, and the role of FoxQ1 in regulating epithelial-mesenchymal transition (EMT) in NSCLC, providing evidence that FoxQ1 could be a potential therapeutic target in NSCLC. NSCLC cells with silenced FoxQ1 had decreased cell proliferation, migration and invasion in cell culture and delayed growth of xenograft tumors in mice compared with corresponding control cells. The NSCLC cells downregulated for FoxQ1 induced the expression of apoptosis-associated proteins and reduction of anti-apoptotic protein expression. Downregulation of FoxQ1 promoted the expression of epithelial markers and decreased several mesenchymal markers in vitro and in vivo. In addition, FoxQ1 was associated with resistance to conventional chemotherapeutic agents. In contrast, FoxQ1 overexpressed elicited converse effects on these phenotypes in vitro and in vivo. Our findings define a key role for FoxQ1 in regulating EMT and increasing chemosensitivity in NSCLC.


The Effect of Wenxin Keli on the mRNA Expression Profile of Rabbits with Myocardial Infarction.

  • Min Zheng‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2016‎

Aims. The molecular mechanisms of Chinese traditional medicine Wenxin Keli (WXKL) were unknown. This study was aimed at exploring the effects of WXKL on the gene expression profile and pathological alteration of rabbits with myocardial infarction. Methods. Twenty male adult rabbits were randomly divided into 4 groups: sham, model, WXKL, and captopril groups. Model, WXKL, and captopril groups underwent the ligation of the left anterior descending coronary artery while sham group went through an identical procedure without ligation. WXKL (817 mg/kg/d), captopril (8 mg/kg/d), and distilled water (to model and sham groups) were administered orally to each group. After 4 weeks, the rabbits were examined with echocardiography and the hearts were taken for expression chip and pathological staining (H&E, Masson, and Tunel) studies. Results. The data revealed that WXKL downregulated genes associated with inflammation (CX3CR1, MRC1, and FPR1), apoptosis (CTSC and TTC5), and neurohumoral system (ACE and EDN1) and upregulated angiogenesis promoting genes such as RSPO3. Moreover, the results also showed that WXKL improved cardiac function and prevented histopathological injury and apoptosis. Conclusion. The present study demonstrated that WXKL might play an important role in inhibiting inflammation, renin-angiotensin system, and apoptosis. It might be a promising Chinese medicine in the treatment of patients with myocardial infarction.


Molecular Differences in Hepatic Metabolism between AA Broiler and Big Bone Chickens: A Proteomic Study.

  • Aijuan Zheng‎ et al.
  • PloS one‎
  • 2016‎

Identifying the metabolic differences in the livers of modern broilers and local chicken breeds is important for understanding their biological characteristics, and many proteomic changes in their livers are not well characterized. We therefore analyzed the hepatic protein profiles of a commercial breed, Arbor Acres (AA) broilers, and a local dual purpose breed, Big Bone chickens, using two-dimensional electrophoresis combined with liquid chromatography-chip/electrospray ionization-quadruple time-of-flight/mass spectrometry (LC-MS/MS). A total of 145 proteins were identified as having differential abundance in the two breeds at three growth stages. Among them, 49, 63 and 54 belonged to 2, 4, and 6 weeks of age, respectively. The higher abundance proteins in AA broilers were related to the energy production pathways suggesting enhanced energy metabolism and lipid biosynthesis. In contrast, the higher abundance proteins in Big Bone chickens showed enhanced lipid degradation, resulting in a reduction in the abdominal fat percentage. Along with the decrease in fat deposition, flavor substance synthesis in the meat of the Big Bone chickens may be improved by enhanced abundance of proteins involved in glycine metabolism. In addition, the identified proteins in nucleotide metabolism, antioxidants, cell structure, protein folding and transporters may be critically important for immune defense, gene transcription and other biological processes in the two breeds. These results indicate that selection pressure may have shaped the two lines differently resulting in different hepatic metabolic capacities and extensive metabolic differences in the liver. The results from this study may help provide the theoretical basis for chicken breeding.


CACNA1B (Cav2.2) Overexpression and Its Association with Clinicopathologic Characteristics and Unfavorable Prognosis in Non-Small Cell Lung Cancer.

  • Xiaoyu Zhou‎ et al.
  • Disease markers‎
  • 2017‎

CACNA1B (Cav2.2) encodes an N-type voltage-gated calcium channel (VGCC) ubiquitously expressed in brain and peripheral nervous system that is important for regulating neuropathic pain. Because intracellular calcium concentration is a key player in cell proliferation and apoptosis, VGCCs are implicated in tumorigenesis. Recent studies have identified CACNA1B (Cav2.2) being overexpressed in prostate and breast cancer tissues when compared to adjacent normal tissues; however, its role in non-small cell lung cancer (NSCLC) has not been investigated. In this study, we determined the mRNA and protein expression of CACNA1B (Cav2.2) in NSCLC tumorous and adjacent nontumorous tissues by quantitative reverse transcription PCR (qRT-PCR) and tissue microarray immunohistochemistry analysis (TMA-IHC), respectively. CACNA1B (Cav2.2) protein expressions in tumorous tissues were correlated with NSCLC patients' clinical characteristics and overall survival. CACNA1B (Cav2.2) mRNA and protein expression levels were higher in NSCLC tumorous tissues than in nontumorous tissues. High CACNA1B (Cav2.2) protein expression was associated with higher TNM stages, and CACNA1B (Cav2.2) protein expression is an independent prognostic marker in NSCLC. Based on our results, we conclude that CACNA1B (Cav2.2) plays a role in NSCLC development and progression. Elucidating the underlying mechanism may help design novel treatment by specifically targeting the calcium regulation pathway for NSCLC, a devastating disease with increasing incidence and mortality in China.


The genome of the pear (Pyrus bretschneideri Rehd.).

  • Jun Wu‎ et al.
  • Genome research‎
  • 2013‎

The draft genome of the pear (Pyrus bretschneideri) using a combination of BAC-by-BAC and next-generation sequencing is reported. A 512.0-Mb sequence corresponding to 97.1% of the estimated genome size of this highly heterozygous species is assembled with 194× coverage. High-density genetic maps comprising 2005 SNP markers anchored 75.5% of the sequence to all 17 chromosomes. The pear genome encodes 42,812 protein-coding genes, and of these, ~28.5% encode multiple isoforms. Repetitive sequences of 271.9 Mb in length, accounting for 53.1% of the pear genome, are identified. Simulation of eudicots to the ancestor of Rosaceae has reconstructed nine ancestral chromosomes. Pear and apple diverged from each other ~5.4-21.5 million years ago, and a recent whole-genome duplication (WGD) event must have occurred 30-45 MYA prior to their divergence, but following divergence from strawberry. When compared with the apple genome sequence, size differences between the apple and pear genomes are confirmed mainly due to the presence of repetitive sequences predominantly contributed by transposable elements (TEs), while genic regions are similar in both species. Genes critical for self-incompatibility, lignified stone cells (a unique feature of pear fruit), sorbitol metabolism, and volatile compounds of fruit have also been identified. Multiple candidate SFB genes appear as tandem repeats in the S-locus region of pear; while lignin synthesis-related gene family expansion and highly expressed gene families of HCT, C3'H, and CCOMT contribute to high accumulation of both G-lignin and S-lignin. Moreover, alpha-linolenic acid metabolism is a key pathway for aroma in pear fruit.


Obligate mutualism within a host drives the extreme specialization of a fig wasp genome.

  • Jin-Hua Xiao‎ et al.
  • Genome biology‎
  • 2013‎

Fig pollinating wasps form obligate symbioses with their fig hosts. This mutualism arose approximately 75 million years ago. Unlike many other intimate symbioses, which involve vertical transmission of symbionts to host offspring, female fig wasps fly great distances to transfer horizontally between hosts. In contrast, male wasps are wingless and cannot disperse. Symbionts that keep intimate contact with their hosts often show genome reduction, but it is not clear if the wide dispersal of female fig wasps will counteract this general tendency. We sequenced the genome of the fig wasp Ceratosolen solmsi to address this question.


Loss of Jak2 impairs endothelial function by attenuating Raf-1/MEK1/Sp-1 signaling along with altered eNOS activities.

  • Ping Yang‎ et al.
  • The American journal of pathology‎
  • 2013‎

A number of inhibitors have been used to dissect the functional relevance of Jak2 in endothelial homeostasis, with disparate results. Given that Jak2 deficiency leads to embryonic lethality, the exact role of Jak2 in the regulation of postnatal endothelial function is yet to be fully elucidated. We generated a model in which Jak2 deficiency can be induced by tamoxifen in adult mice. Loss of Jak2 significantly impaired endothelium-dependent response capacity for vasodilators. Matrigel plug assays indicated a notable decrease in endothelial angiogenic function in Jak2-deficient mice. Studies in a hindlimb ischemic model indicated that Jak2 activity is likely to be a prerequisite for prompt perfusion recovery, based on the concordance of temporal changes in Jak2 expression during the course of ischemic injury and perfusion recovery. A remarkable delay in perfusion recovery, along with reduced capillary and arteriole formation, was observed in Jak2-deficient mice. Antibody array studies indicated that loss of Jak2 led to repressed eNOS expression. In mechanistic studies, Jak2 deficiency attenuated Raf-1/MEK1 signaling, which then reduced activity of Sp-1, an essential transcription factor responsible for eNOS expression. These data are important not only for understanding the exact role that Jak2 plays in endothelial homeostasis, but also for assessing Jak2-based therapeutic strategies in a variety of clinical settings.


Histidine-rich glycoprotein function in hepatocellular carcinoma depends on its N-glycosylation status, and it regulates cell proliferation by inhibiting Erk1/2 phosphorylation.

  • Qinle Zhang‎ et al.
  • Oncotarget‎
  • 2015‎

Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality. Significantly downregulated histidine-rich glycoprotein (HRG) during the dynamic stages (WB, WB7, and WB11) of neoplastic transformation of WB F344 hepatic oval-like cells was screened out by iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. HRG expression was significantly lower in HCC tissues. HRG overexpression in Huh7 and MHCC-97H hepatoma cell lines led to decreased cell proliferation, colony-forming ability, and tumor growth, and increased cell apoptosis. HRG could inhibit cell proliferation via the FGF-Erk1/2 signaling pathway by reducing Erk1/2 phosphorylation. On the other hand, the functional expression of HRG was also dependent on the glycosylation status at its N-terminal, especially at the glycosylation site Asn 125. The glycosylation of HRG may play a key competitive role in the interaction between HRG and heparin sulfate for binding bFGF and activating the FGF receptor. These findings provide novel insights into the molecular mechanism of HRG in HCC.


A nonsense mutation in the DNA repair factor Hebo causes mild bone marrow failure and microcephaly.

  • Shu Zhang‎ et al.
  • The Journal of experimental medicine‎
  • 2016‎

Inherited bone marrow failure syndromes are human conditions in which one or several cell lineages of the hemopoietic system are affected. They are present at birth or may develop progressively. They are sometimes accompanied by other developmental anomalies. Three main molecular causes have been recognized to result in bone marrow failure syndromes: (1) defects in the Fanconi anemia (FA)/BRCA DNA repair pathway, (2) defects in telomere maintenance, and (3) abnormal ribosome biogenesis. We analyzed a patient with mild bone marrow failure and microcephaly who did not present with the typical FA phenotype. Cells from this patient showed increased sensitivity to ionizing radiations and phleomycin, attesting to a probable DNA double strand break (dsb) repair defect. Linkage analysis and whole exome sequencing revealed a homozygous nonsense mutation in the ERCC6L2 gene. We identified a new ERCC6L2 alternative transcript encoding the DNA repair factor Hebo, which is critical for complementation of the patient's DNAdsb repair defect. Sequence analysis revealed three structured regions within Hebo: a TUDOR domain, an adenosine triphosphatase domain, and a new domain, HEBO, specifically present in Hebo direct orthologues. Hebo is ubiquitously expressed, localized in the nucleus, and rapidly recruited to DNAdsb's in an NBS1-dependent manner.


Prognostic value of decreased expression of RBM4 in human gastric cancer.

  • Hongmei Yong‎ et al.
  • Scientific reports‎
  • 2016‎

RNA-binding motif 4 (RBM4) is a multifunctional protein that participates in regulating alternative splicing and mRNA translation. Its reduced expression has been associated with poor overall survival in lung cancer, breast cancer and ovarian cancer. We assessed RBM4 protein expression levels with immunohistochemistry in tissue microarrays containing malignant gastric cancer tissues and benign tissues from 813 patients. We also examined the expression levels of RBM4 mRNA in twenty-five paired gastric cancer samples and adjacent noncancerous tissues. Both RBM4 protein and mRNA expression levels were significantly lower in gastric cancer tissues compared with the adjacent noncancerous tissues. There was a significant association between reduced RBM4 protein expression and differentiation (P < 0.001), lymph node metastasis (P = 0.026), TNM state (P = 0.014) and distant metastasis (P = 0.036). Patients with reduced RBM4 expression (P < 0.001, CI = 0.315-0.710) and TNM stage III and IV (P < 0.001, CI = 4.757-11.166) had a poor overall survival. These findings suggest that RBM4 is a new biomarker in gastric cancer, as the reduced expression of this protein is correlated with poor differentiation, lymph node status and distant metastasis. Further, lower RBM4 expression is an independent prognostic marker for gastric cancer.


Efficacy and safety of bevacizumab plus erlotinib versus bevacizumab or erlotinib alone in the treatment of non-small-cell lung cancer: a systematic review and meta-analysis.

  • Shu Zhang‎ et al.
  • BMJ open‎
  • 2016‎

Bevacizumab and erlotinib inhibit different tumour growth pathways, and both exhibit beneficial effects in the treatment of non-small-cell lung cancer (NSCLC). However, the efficacy of bevacizumab in combination with erlotinib remains controversial. Therefore, we conducted a meta-analysis to compare combination treatment with bevacizumab and erlotinib to bevacizumab or erlotinib monotherapy in the treatment of NSCLC.


Chop Deficiency Protects Mice Against Bleomycin-induced Pulmonary Fibrosis by Attenuating M2 Macrophage Production.

  • Yingying Yao‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2016‎

C/EBP homologous protein (Chop) has been shown to have altered expression in patients with idiopathic pulmonary fibrosis (IPF), but its exact role in IPF pathoaetiology has not been fully addressed. Studies conducted in patients with IPF and Chop(-/-) mice have dissected the role of Chop and endoplasmic reticulum (ER) stress in pulmonary fibrosis pathogenesis. The effect of Chop deficiency on macrophage polarization and related signalling pathways were investigated to identify the underlying mechanisms. Patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis were affected by the altered Chop expression and ER stress. In particular, Chop deficiency protected mice against BLM-induced lung injury and fibrosis. Loss of Chop significantly attenuated transforming growth factor β (TGF-β) production and reduced M2 macrophage infiltration in the lung following BLM induction. Mechanistic studies showed that Chop deficiency repressed the M2 program in macrophages, which then attenuated TGF-β secretion. Specifically, loss of Chop promoted the expression of suppressors of cytokine signaling 1 and suppressors of cytokine signaling 3, and through which Chop deficiency repressed signal transducer and activator of transcription 6/peroxisome proliferator-activated receptor gamma signaling, the essential pathway for the M2 program in macrophages. Together, our data support the idea that Chop and ER stress are implicated in IPF pathoaetiology, involving at least the induction and differentiation of M2 macrophages.


Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force.

  • Shu Zhang‎ et al.
  • PloS one‎
  • 2012‎

Mechanotransduction has demonstrated potential for regulating tissue adaptation in vivo and cellular activities in vitro. It is well documented that ultrasound can produce a wide variety of biological effects in biological systems. For example, pulsed ultrasound can be used to noninvasively accelerate the rate of bone fracture healing. Although a wide range of studies has been performed, mechanism for this therapeutic effect on bone healing is currently unknown. To elucidate the mechanism of cellular response to mechanical stimuli induced by pulsed ultrasound radiation, we developed a method to apply focused acoustic radiation force (ARF) (duration, one minute) on osteoblastic MC3T3-E1 cells and observed cellular responses to ARF using a spinning disk confocal microscope. This study demonstrates that the focused ARF induced F-actin cytoskeletal rearrangement in MC3T3-E1 cells. In addition, these cells showed an increase in intracellular calcium concentration following the application of focused ARF. Furthermore, passive bending movement was noted in primary cilium that were treated with focused ARF. Cell viability was not affected. Application of pulsed ultrasound radiation generated only a minimal temperature rise of 0.1°C, and induced a streaming resulting fluid shear stress of 0.186 dyne/cm(2), suggesting that hyperthermia and acoustic streaming might not be the main causes of the observed cell responses. In conclusion, these data provide more insight in the interactions between acoustic mechanical stress and osteoblastic cells. This experimental system could serve as basis for further exploration of the mechanosensing mechanism of osteoblasts triggered by ultrasound.


The role of the Hsp90/Akt pathway in myocardial calpain-induced caspase-3 activation and apoptosis during sepsis.

  • Xiaoping Li‎ et al.
  • BMC cardiovascular disorders‎
  • 2013‎

Recent studies have demonstrated that myocardial calpain triggers caspase-3 activation and myocardial apoptosis in models of sepsis, whereas the inhibition of calpain activity down-regulates myocardial caspase-3 activation and apoptosis. However, the mechanism underlying this pathological process is unclear. Therefore, in this study, our aim was to explore whether the Hsp90/Akt signaling pathway plays a role in the induction of myocardial calpain activity, caspase-3 activation and apoptosis in the septic mice.


Prevention of β-amyloid induced toxicity in human iPS cell-derived neurons by inhibition of Cyclin-dependent kinases and associated cell cycle events.

  • Xiaohong Xu‎ et al.
  • Stem cell research‎
  • 2013‎

Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive decline due to the selective neuronal loss in the cortex and hippocampus of the brains. Generation of human induced pluoripotent stem (hiPS) cells holds great promise for disease modeling and drug discovery in AD. In this study, we used neurons with forebrain marker expression from two unrelated hiPS cell lines. As both populations of neurons were vulnerable to β-amyloid 1-42 (Aβ1-42) aggregates, a hallmark of AD pathology, we used them to investigate cellular mediators of Aβ1-42 toxicity. We observed in neurons differentiated from both hiPS cell lines that Aβ induced toxicity correlated with cell cycle re-entry and was inhibited by pharmacological inhibitors or shRNAs against Cyclin-dependent kinase 2 (Cdk2). As one of the hiPS cell lines has been developed commercially to supply large quantities of differentiated neurons (iCell® Neurons), we screened a chemical library containing several hundred compounds and discovered several small molecules as effective blockers against Aβ1-42 toxicity, including a Cdk2 inhibitor. To our knowledge, this is the first demonstration of an Aβ toxicity screen using hiPS cell-derived neurons. This study provided an excellent example of how hiPS cells can be used for disease modeling and high-throughput compound screening for neurodegenerative diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: