Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Clinical implications of serum N-glycan profiling as a diagnostic and prognostic biomarker in germ-cell tumors.

  • Takuma Narita‎ et al.
  • Cancer medicine‎
  • 2017‎

Serum biomarker monitoring is essential for management of germ-cell tumors (GCT). However, not all GCT are positive for conventional tumor markers. We examined whether serum N-glycan-based biomarkers can be applied for detection and prognosis in patients with GCT. We performed a comprehensive N-glycan structural analysis of sera from 54 untreated GCT patients and 103 age-adjusted healthy volunteers using glycoblotting methods and mass spectrometry. Candidate N-glycans were selected from those with the highest association; cutoff concentration values were established, and an N-glycan score was created based on the number of positive N-glycans present. The validity of this score for diagnosis and prognosis was analyzed using a receiver operating characteristic (ROC) curve. We identified five candidate N-glycans significantly associated with GCT patients. The accuracy of the N-glycan score for GCT was significant with an area-under-the-curve (AUC) value of 0.87. Diagnostically, the N-glycan score detected 10 of 12 (83%) patients with negative conventional tumor markers. Prognostically, the N-glycan score comprised four candidate N-glycans. The predictive value of the prognostic N-glycan score was significant, with an AUC value of 0.89. A high value prognostic N-glycan score was significantly associated with poor prognosis. Finally, to identify a potential carrier protein, immunoglobulin (Ig) fractions of sera were subjected to N-glycan analysis and compared to whole sera. Candidate N-glycans in Ig-fractions were significantly decreased; therefore, the carrier protein for candidate N-glycans is likely not an immunoglobulin. In summary, our newly developed N-glycan score seems to be a practical diagnostic and prognostic method for GCT.


Formation of Nanoscale Protrusions on Polymer Films after Atomic Oxygen Irradiation: Changes in Morphologies, Masses, and FT-IR Spectra.

  • Aki Goto‎ et al.
  • Langmuir : the ACS journal of surfaces and colloids‎
  • 2022‎

Atomic oxygen (AO) is the main component of the residual atmosphere in a low Earth orbit. AO with a translational energy of 5 eV colliding with artificial satellites forms nano- and microscale protrusions on polymeric materials. This study investigated the influences of AO (fluence and velocity distribution) and a polymer's chemical structure on such surface morphologies. The correlations between samples' mass losses and positions in the irradiation field of an AO beam were analyzed with polyimide (Kapton) films, a standard reference material for AO fluence measurements. The characterizations of polyethylene (PE), polypropylene (PP), and polystyrene (PS) films were studied using gel permeation chromatography and X-ray diffraction. The sample surfaces were observed using a field emission scanning electron microscope. Nanoscale protrusions were formed on all the samples and were larger but fewer with increasing AO fluence. The numerical density of protrusions formed on PE and PP was lower than that on PS. However, the erosion yields and functional groups of PE, PP, and PS were similar per FT-IR spectra.


Phase II trial of nivolumab monotherapy and biomarker screening in patients with chemo-refractory germ cell tumors.

  • Takashi Kawahara‎ et al.
  • International journal of urology : official journal of the Japanese Urological Association‎
  • 2022‎

Germ cell tumors are highly susceptible to chemotherapy; however, there is a lack of established treatments for consistently relapsing germ cell tumor. Therefore, in this phase II study, we evaluated the efficacy and safety of nivolumab for relapsed germ cell tumor.


Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis.

  • Atsushi Kimura‎ et al.
  • Pharmaceutics‎
  • 2022‎

Nanoparticle-based drug delivery systems (DDS) have been developed as effective diagnostic and low-dose imaging agents. Nano-imaging agents with particles greater than 100 nm are difficult to accumulate in pancreatic cancer cells, making high-intensity imaging of pancreatic cancer challenging. Peptides composed of histidine and glycine were designed and synthesized. Additionally, aqueous peptide solutions were irradiated with γ-rays to produce peptide nanogels with an average size of 25-53 nm. The mechanisms underlying radiation-mediated peptide crosslinking were investigated by simulating peptide particle formation based on rate constants. The rate constants for reactions between peptides and reactive species produced by water radiolysis were measured using pulse radiolysis. HGGGHGGGH (H9, H-histidine; G-glycine) particles exhibited a smaller size, as well as high formation yield, stability, and biodegradability. These particles were labeled with fluorescent dye to change their negative surface potential and enhance their accumulation in pancreatic cancer cells. Fluorescent-labeled H9 particles accumulated in PANC1 human pancreatic cancer cells, demonstrating that these particles are effective nano-imaging agents for intractable cancers.


Clinicopathological Significance of Estrogen Receptor β and Estrogen Synthesizing/Metabolizing Enzymes in Urothelial Carcinoma of Urinary Bladder.

  • Naomi Sato‎ et al.
  • Pathology oncology research : POR‎
  • 2021‎

Sex-specific differences in the incidence of urinary bladder carcinomas are well known, and the possible involvement of sex steroids has been proposed. We previously reported the association of the loss of androgen receptors and androgen-producing enzymes with tumor progression of urinary bladder cancer patients. Clinically, the selective estrogen receptor modulators (SERMs) were reported to suppress the progression of these tumors but the status of estrogen receptors (ERs) has not been well studied in patients with bladder urinary cancer. Moreover, not only ERs but also estrogen-related enzymes, such as aromatase, steroid sulfatase (STS), and estrogen sulfotransferase (EST), have been reported in the biological/clinical behavior of various hormone-dependent carcinomas but not studied in urinary bladder carcinoma. Therefore, in this study, we immunolocalized ERs as well as estrogen metabolizing enzymes in urinary bladder carcinoma and performed immunoblotting and cell proliferation assays using the bladder urothelial carcinoma cell line, T24. The results revealed that the loss of STS and aromatase was significantly correlated with advanced stages of the carcinoma. In vitro studies also revealed that T24 cell proliferation rates were significantly ameliorated after treatment with estradiol or diarylpropionitrile (DPN). EST and aromatase were also significantly correlated with the nuclear grade of the carcinoma. The results of our present study, for the first time, demonstrated that biologically active estrogens that bind to ERs could suppress tumor progression and the inactive ones could promote its progression and the potential clinical utility of SERM treatment in selective patients with urinary bladder carcinoma.


Formation of Nanoscale Protrusions on Polymer Films after Atomic Oxygen Exposure: Observations with Positron Annihilation Lifetime Spectroscopy.

  • Aki Goto‎ et al.
  • Langmuir : the ACS journal of surfaces and colloids‎
  • 2023‎

Atomic oxygen (AO) is one of the dominant components of the residual atmosphere in low Earth orbit. AO collides with spacecraft with a translational energy of 5 eV, forming nanoscale protrusions on polymeric materials. To clarify the influences of a polymer's chemical structure on the formation of AO-induced microstructures, this study investigated the size of free-volume holes and the layer thickness that interacted with AO for polyethylene (PE), polypropylene (PP), and polystyrene (PS) by positron annihilation lifetime spectroscopy. The injection energies of positrons varied from 1.3 to 10 keV to adjust the injection depth (range) into the polymers (40 nm-1.6 μm). For the pristine films, the lifetime of ortho-positronium (o-Ps, τ3) was longer in the order of PS, PP, and PE regardless of the injection energy of positrons, showing the different sizes of free-volume holes with radii of 0.29, 0.31, and 0.32 nm, respectively. The fraction of the decay component corresponding to o-Ps in all decay components (relative intensity of o-Ps, I3) was used to investigate the chemical change induced by AO exposure. The I3 values for the three polymers were decreased by AO exposure of (2-5) × 1018 atoms/cm2 or more at a depth of 40-48 nm, obtained by 1.3 keV positrons. This indicates that AO formed polar groups (i.e., an oxidized layer) on the polymer surfaces. The maximum depths of such chemical change for PE and PP were deeper than that for PS. The different sizes of free-volume holes would affect the diffusion or ballistic penetration of AO, resulting in the difference in the oxidized layers' thicknesses and surface morphologies.


Combination Therapy of Pembrolizumab plus Axitinib for a Patient on Hemodialysis with Metastatic Renal Cell Carcinoma: A Case Report.

  • Yuki Katsumata‎ et al.
  • Case reports in oncology‎
  • 2021‎

Here, we discuss the safety and management of adverse events associated with pembrolizumab plus axitinib combination therapy for metastatic renal cell carcinoma in patients on hemodialysis. A 76-year-old man was diagnosed with cT3aN0M0 renal cell carcinoma due to gross hematuria. Stereoscopic radiotherapy for metastatic lesions of the ipsilateral kidney was performed 9 years after right laparoscopic radical nephrectomy. Soon after, the patient started to receive hemodialysis due to end-stage renal disease. Further stereoscopic radiotherapy was needed for metastasis of the ipsilateral kidney and lung. Fifteen years after diagnosis, systemic therapy was necessary to control new metastases, such as in the right scapular bone. We selected pembrolizumab plus axitinib combination therapy as the first-line systemic therapy for any risk as defined by the International Metastatic RCC Database Consortium. Although we needed to pay attention to the adverse events unique to hemodialysis, he underwent this combination therapy without any difficulty for 6 months. Here, we report the practice of combination therapy in patients on hemodialysis in light of the literature.


Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of pro-inflammatory cytokines/chemokines.

  • Kuo-Pao Lai‎ et al.
  • EMBO molecular medicine‎
  • 2012‎

Stromal-epithelial interaction is crucial to mediate normal prostate and prostate cancer (PCa) development. The indispensable roles of mesenchymal/stromal androgen receptor (AR) for the prostate organogenesis have been demonstrated by using tissue recombination from wild-type and testicular feminized mice. However, the stromal AR functions in the tumour microenvironment and the underlying mechanisms governing the interactions between the epithelium and stroma are not completely understood. Here, we have established the first animal model with AR deletion in stromal fibromuscular cells (dARKO, AR knockout in fibroblasts and smooth muscle cells) in the Pten(+/-) mouse model that can spontaneously develop prostatic intraepithelial neoplasia (PIN). We found that loss of stromal fibromuscular AR led to suppression of PIN lesion development with alleviation of epithelium proliferation and tumour-promoting microenvironments, including extracellular matrix (ECM) remodelling, immune cell infiltration and neovasculature formation due, in part, to the modulation of pro-inflammatory cytokines/chemokines. Finally, targeting stromal fibromuscular AR with the AR degradation enhancer, ASC-J9®, resulted in the reduction of PIN development/progression, which might provide a new approach to suppress PIN development.


Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid.

  • Kuniki Hata‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10-100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50-60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.


Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-κB Activation.

  • Chikayo Iwaya‎ et al.
  • Endocrinology‎
  • 2017‎

Incretin therapies have received much attention because of their tissue-protective effects, which extend beyond those associated with glycemic control. Cancer is a primary cause of death in patients who have diabetes mellitus. We previously reported antiprostate cancer effects of the glucagonlike peptide-1 (GLP-1) receptor (GLP-1R) agonist exendin-4 (Ex-4). Breast cancer is one of the most common cancers in female patients who have type 2 diabetes mellitus and obesity. Thus, we examined whether GLP-1 action could attenuate breast cancer. GLP-1R was expressed in human breast cancer tissue and MCF-7, MDA-MB-231, and KPL-1 cell lines. We found that 0.1 to 10 nM Ex-4 significantly decreased the number of breast cancer cells in a dose-dependent manner. Although Ex-4 did not induce apoptosis, it attenuated breast cancer cell proliferation significantly and dose-dependently. However, the dipeptidyl peptidase-4 inhibitor linagliptin did not affect breast cancer cell proliferation. When MCF-7 cells were transplanted into athymic mice, Ex-4 decreased MCF-7 tumor size in vivo. Ki67 immunohistochemistry revealed that breast cancer cell proliferation was significantly reduced in tumors extracted from Ex-4-treated mice. In MCF-7 cells, Ex-4 significantly inhibited nuclear factor κB (NF-κB ) nuclear translocation and target gene expression. Furthermore, Ex-4 decreased both Akt and IκB phosphorylation. These results suggest that GLP-1 could attenuate breast cancer cell proliferation via activation of GLP-1R and subsequent inhibition of NF-κB activation.


Machine learning diagnosis by immunoglobulin N-glycan signatures for precision diagnosis of urological diseases.

  • Hiromichi Iwamura‎ et al.
  • Cancer science‎
  • 2022‎

Early diagnosis of urological diseases is often difficult due to the lack of specific biomarkers. More powerful and less invasive biomarkers that can be used simultaneously to identify urological diseases could improve patient outcomes. The aim of this study was to evaluate a urological disease-specific scoring system established with a machine learning (ML) approach using Ig N-glycan signatures. Immunoglobulin N-glycan signatures were analyzed by capillary electrophoresis from 1312 serum subjects with hormone-sensitive prostate cancer (n = 234), castration-resistant prostate cancer (n = 94), renal cell carcinoma (n = 100), upper urinary tract urothelial cancer (n = 105), bladder cancer (n = 176), germ cell tumors (n = 73), benign prostatic hyperplasia (n = 95), urosepsis (n = 145), and urinary tract infection (n = 21) as well as healthy volunteers (n = 269). Immunoglobulin N-glycan signature data were used in a supervised-ML model to establish a scoring system that gave the probability of the presence of a urological disease. Diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUC). The supervised-ML urologic disease-specific scores clearly discriminated the urological diseases (AUC 0.78-1.00) and found a distinct N-glycan pattern that contributed to detect each disease. Limitations included the retrospective and limited pathological information regarding urological diseases. The supervised-ML urological disease-specific scoring system based on Ig N-glycan signatures showed excellent diagnostic ability for nine urological diseases using a one-time serum collection and could be a promising approach for the diagnosis of urological diseases.


Metabolomic Analysis to Elucidate Mechanisms of Sunitinib Resistance in Renal Cell Carcinoma.

  • Tomonori Sato‎ et al.
  • Metabolites‎
  • 2020‎

Metabolomics analysis possibly identifies new therapeutic targets in treatment resistance by measuring changes in metabolites accompanying cancer progression. We previously conducted a global metabolomics (G-Met) study of renal cell carcinoma (RCC) and identified metabolites that may be involved in sunitinib resistance in RCC. Here, we aimed to elucidate possible mechanisms of sunitinib resistance in RCC through intracellular metabolites. We established sunitinib-resistant and control RCC cell lines from tumor tissues of RCC cell (786-O)-injected mice. We also quantified characteristic metabolites identified in our G-Met study to compare intracellular metabolism between the two cell lines using liquid chromatography-mass spectrometry. The established sunitinib-resistant RCC cell line demonstrated significantly desuppressed protein kinase B (Akt) and mesenchymal-to-epithelial transition (MET) phosphorylation compared with the control RCC cell line under sunitinib exposure. Among identified metabolites, glutamine, glutamic acid, and α-KG (involved in glutamine uptake into the tricarboxylic acid (TCA) cycle for energy metabolism); fructose 6-phosphate, D-sedoheptulose 7-phosphate, and glucose 1-phosphate (involved in increased glycolysis and its intermediate metabolites); and glutathione and myoinositol (antioxidant effects) were significantly increased in the sunitinib-resistant RCC cell line. Particularly, glutamine transporter (SLC1A5) expression was significantly increased in sunitinib-resistant RCC cells compared with control cells. In this study, we demonstrated energy metabolism with glutamine uptake and glycolysis upregulation, as well as antioxidant activity, was also associated with sunitinib resistance in RCC cells.


Low-energy shock wave therapy ameliorates ischemic-induced overactive bladder in a rat model.

  • Shingo Kimura‎ et al.
  • Scientific reports‎
  • 2022‎

This study was to evaluate whether Low-energy shock wave therapy (LESW) improves ischemic-induced overactive bladder in rats and investigate its therapeutic mechanisms. Sixteen-week-old male Sprague-Dawley rats were divided into three groups: arterial injury (AI), AI with LESW (AI-SW), and control groups. LESW was irradiated in AI-SW during 20-23 weeks of age. At 24 weeks of age, conscious cystometry was performed (each n = 8). The voiding interval was shortened in AI (mean ± SEM: 5.1 ± 0.8 min) than in control (17.3 ± 3.0 min), whereas significant improvements were observed in AI-SW (14.9 ± 3.3 min). The bladder blood flow was significantly increased in AI-SW than in AI. Microarray analysis revealed higher gene expression of soluble guanylate cyclase (sGC) α1 and β1 in the bladder of AI-SW compared to AI. Protein expression of sGCα1 and sGCβ1 was higher in AI-SW and control groups than in AI. Cyclic guanosine monophosphate (cGMP) was elevated in AI-SW. As an early genetic response, vascular endothelial growth factor and CD31 were highly expressed 24 h after the first LESW. Suburothelial thinning observed in AI was restored in AI-SW. Activation of sGC-cGMP may play a therapeutic role of LESW in the functional recovery of the bladder.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: