Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

mTOR signaling in VIP neurons regulates circadian clock synchrony and olfaction.

  • Dong Liu‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Mammalian/mechanistic target of rapamycin (mTOR) signaling controls cell growth, proliferation, and metabolism in dividing cells. Less is known regarding its function in postmitotic neurons in the adult brain. Here we created a conditional mTOR knockout mouse model to address this question. Using the Cre-LoxP system, the mTOR gene was specifically knocked out in cells expressing Vip (vasoactive intestinal peptide), which represent a major population of interneurons widely distributed in the neocortex, suprachiasmatic nucleus (SCN), olfactory bulb (OB), and other brain regions. Using a combination of biochemical, behavioral, and imaging approaches, we found that mice lacking mTOR in VIP neurons displayed erratic circadian behavior and weakened synchronization among cells in the SCN, the master circadian pacemaker in mammals. Furthermore, we have discovered a critical role for mTOR signaling in mediating olfaction. Odor stimulated mTOR activation in the OB, anterior olfactory nucleus, as well as piriform cortex. Odor-evoked c-Fos responses along the olfactory pathway were abolished in mice lacking mTOR in VIP neurons, which is consistent with reduced olfactory sensitivity in these animals. Together, these results demonstrate that mTOR is a key regulator of SCN circadian clock synchrony and olfaction.


Exploring the role of locomotor sensitization in the circadian food entrainment pathway.

  • Hanna Opiol‎ et al.
  • PloS one‎
  • 2017‎

Food entrainment is the internal mechanism whereby the phase and period of circadian clock genes comes under the control of daily scheduled food availability. Food entrainment allows the body to efficiently realign the internal timing of behavioral and physiological functions such that they anticipate food intake. Food entrainment can occur with or without caloric restriction, as seen with daily schedules of restricted feeding (RF) or restricted treat (RT) that restrict food or treat intake to a single feeding time. However, the extent of clock gene control is more pronounced with caloric restriction, highlighting the role of energy balance in regulating clock genes. Recent studies have implicated dopamine (DA) to be involved in food entrainment and caloric restriction is known to affect dopaminergic pathways to enhance locomotor activity. Since food entrainment results in the development of a distinct behavioral component, called food anticipatory activity (FAA), we examined the role of locomotor sensitization (LS) in food entrainment by 1) observing whether amphetamine (AMPH) sensitization results in enhanced locomotor output of FAA and 2) measuring LS of circadian and non-circadian feeding paradigms to an acute injection of AMPH (AMPH cross-sensitization). Unexpectedly, AMPH sensitization did not show enhancement of FAA. On the contrary, LS did develop with sufficient exposure to RF. LS was present after 2 weeks of RF, but not after 1, 3 or 7 days into RF. When food was returned and rats regain their original body weight at 10-15 days post-RF, LS remained present. LS did not develop to RT, nor to feedings of a non-circadian schedule, e.g. variable restricted feeding (VRF) or variable RT (VRT). Further, when RF was timed to the dark period, LS was observed only when tested at night; RF timed to the light period resulted in LS that was present during day and night. Taken together our results show that LS develops with food entrainment to RF, an effect that is dependent on the chronicity and circadian phase of RF but independent of body weight. Given that LS involves reorganization of DA-regulated motor circuitry, our work provides indirect support for the role of DA in the food entrainment pathway of RF. The findings also suggest differences in neuronal pathways involved in LS from AMPH sensitization and LS from RF.


Effects of bilateral anterior agranular insula lesions on food anticipatory activity in rats.

  • Alex M Gavrila‎ et al.
  • PloS one‎
  • 2017‎

Food anticipatory activity (FAA) refers to a daily rhythm of locomotor activity that emerges under conditions of food restriction, whereby animals develop an intense, predictable period of activity in the few hours leading up to a predictable, daily delivery of food. The neural mechanisms by which FAA is regulated are not yet fully understood. Although a number of brain regions appear to be involved in regulating the development and expression of FAA, there is little evidence to date concerning the role of the anterior agranular insular cortex (AICa). The AICa plays a critical role in integrating the perception of visceral states with motivational behaviour such as feeding. We assessed the effect of bilateral electrolytic or ibotenic acid lesions of the AICa on FAA in male Wistar rats receiving food for varying lengths of time (2 h, 3 h, or 5 h) during the middle of the light phase (starting at either ZT4 or ZT6). Contrary to our initial expectations, we found that both electrolytic and ibotenic acid lesions significantly increased, rather than decreased, the amount of FAA expressed in lesioned rats. Despite increased FAA, lesioned rats did not eat significantly more during restricted feeding (RF) periods than control rats. Similar to controls, AlCa-lesioned rats showed negligible anticipatory activity to a restricted treat suggesting that the increased anticipatory activity in lesioned rats is associated with food restriction, rather than the appetitive value of the meal. Monitoring behaviour in an open field indicated that increased FAA in AlCa-lesioned rats was not explained by a general increase in locomotor activity. Together, these findings suggest that the AICa contributes to the network of brain regions involved in FAA.


The eIF2α Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4.

  • Salil Saurav Pathak‎ et al.
  • Neuron‎
  • 2019‎

The integrated stress response (ISR) is activated in response to diverse stress stimuli to maintain homeostasis in neurons. Central to this process is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Here, we report a critical role for ISR in regulating the mammalian circadian clock. The eIF2α kinase GCN2 rhythmically phosphorylates eIF2α in the suprachiasmatic circadian clock. Increased eIF2α phosphorylation shortens the circadian period in both fibroblasts and mice, whereas reduced eIF2α phosphorylation lengthens the circadian period and impairs circadian rhythmicity in animals. Mechanistically, phosphorylation of eIF2α promotes mRNA translation of Atf4. ATF4 binding motifs are identified in multiple clock genes, including Per2, Per3, Cry1, Cry2, and Clock. ATF4 binds to the TTGCAGCA motif in the Per2 promoter and activates its transcription. Together, these results demonstrate a significant role for ISR in circadian physiology and provide a potential link between dysregulated ISR and circadian dysfunction in brain diseases.


Glucocorticoids and Stress-Induced Changes in the Expression of PERIOD1 in the Rat Forebrain.

  • Sherin Al-Safadi‎ et al.
  • PloS one‎
  • 2015‎

The secretion of glucocorticoids in mammals is under circadian control, but glucocorticoids themselves are also implicated in modulating circadian clock gene expression. We have shown that the expression of the circadian clock protein PER1 in the forebrain is modulated by stress, and that this effect is associated with changes in plasma corticosterone levels, suggesting a possible role for glucocorticoids in the mediation of stress-induced changes in the expression of PER1 in the brain. To study this, we assessed the effects of adrenalectomy and of pretreatment with the glucocorticoid receptor antagonist, mifepristone, on the expression of PER1 in select limbic and hypothalamic regions following acute exposure to a neurogenic stressor, restraint, or a systemic stressor, 2-Deoxy-D-glucose (2DG) in rats. Acute restraint suppressed PER1 expression in the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) and the central nucleus of the amygdala (CEAl), whereas 2DG increased PER1 in both regions. Both stressors increased PER1 expression in the paraventricular (PVN) and dorsomedial (DMH) nuclei of the hypothalamus, and the piriform cortex (Pi). Adrenalectomy and pretreatment with mifepristone reversed the effects of both stressors on PER1 expression in the BNSTov and CEAl, and blocked their effects in the DMH. In contrast, both treatments enhanced the effects of restraint and 2DG on PER1 levels in the PVN. Stress-induced PER1 expression in the Pi was unaffected by either treatment. PER1 expression in the suprachiasmatic nucleus, the master circadian clock, was not altered by either exposure to stress or by the glucocorticoid manipulations. Together, the results demonstrate a key role for glucocorticoid signaling in stress-induced changes in PER1 expression in the brain.


Phase differences in expression of circadian clock genes in the central nucleus of the amygdala, dentate gyrus, and suprachiasmatic nucleus in the rat.

  • Valerie L Harbour‎ et al.
  • PloS one‎
  • 2014‎

We performed a high temporal resolution analysis of the transcript level of two core clock genes, Period2 (Per2) and Bmal1, and a clock output gene, Dbp, in the suprachiasmatic nucleus (SCN), the master circadian clock, and in two forebrain regions, the lateral part of the central nucleus of the amygdala (CEAl), and dentate gyrus (DG), in rats. These regions, as we have shown previously, exhibit opposite rhythms in expression of the core clock protein, PERIOD2 (PER2). We found that the expression of Per2, Bmal1 and Dbp follow a diurnal rhythm in all three regions but the phase and amplitude of the rhythms of each gene vary across regions, revealing important regional differences in temporal dynamics underlying local daily rhythm generation in the mammalian forebrain. These findings underscore the complex temporal organization of subordinate circadian oscillators in the forebrain and raise interesting questions about the functional connection of these oscillators with the master SCN clock.


In utero Exposure to Valproic-Acid Alters Circadian Organisation and Clock-Gene Expression: Implications for Autism Spectrum Disorders.

  • Sarah Ferraro‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2021‎

Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder characterised by restrictive patterns of behaviour and alterations in social interaction and communication. Up to 80% of children with ASD exhibit sleep-wake cycle disturbances, emphasising the pressing need for novel approaches in the treatment of ASD-associated comorbidities. While sleep disturbances have been identified in ASD individuals, little has been done to assess the contribution of the circadian system to these findings. The objective of this study is to characterise circadian behaviour and clock-gene expression in a valproic acid (VPA)-induced animal model of autism to highlight perturbations potentially contributing to these disturbances. Male and female VPA-exposed offspring underwent circadian challenges, including baseline light-dark cycles, constant dark/light and light pulse protocols. Baseline analysis showed that VPA-exposed males, but not females, had a greater distribution of wheel-running behaviour across light-dark phases and a later activity offset (p < 0.0001), while controls showed greater activity confinement to the dark phase (p = 0.0256). Constant light analysis indicated an attenuated masking response and an increase in the number of days to reach arrhythmicity (p < 0.0001). A 1-h light pulse (150 lux) at CT 15 after 6 days of constant dark showed that both sexes exposed to VPA exhibited a lesser phase-shift when compared to controls (p = 0.0043). Immunohistochemical and western-blot assays reveal no alterations in retinal organisation or function. However, immunohistochemical assay of the SCN revealed altered expression of BMAL1 expression in VPA-exposed males (p = 0.0016), and in females (p = 0.0053). These findings suggest alterations within the core clockwork of the SCN and reduced photic-entrainment capacity, independent of retinal dysfunction. The results of this study shed light on the nature of circadian dysregulation in VPA-exposed animals and highlights the urgent need for novel perspectives in the treatment of ASD-associated comorbidities.


Diurnal influences on electrophysiological oscillations and coupling in the dorsal striatum and cerebellar cortex of the anesthetized rat.

  • Ariana Frederick‎ et al.
  • Frontiers in systems neuroscience‎
  • 2014‎

Circadian rhythms modulate behavioral processes over a 24 h period through clock gene expression. What is largely unknown is how these molecular influences shape neural activity in different brain areas. The clock gene Per2 is rhythmically expressed in the striatum and the cerebellum and its expression is linked with daily fluctuations in extracellular dopamine levels and D2 receptor activity. Electrophysiologically, dopamine depletion enhances striatal local field potential (LFP) oscillations. We investigated if LFP oscillations and synchrony were influenced by time of day, potentially via dopamine mechanisms. To assess the presence of a diurnal effect, oscillatory power and coherence were examined in the striatum and cerebellum of rats under urethane anesthesia at four different times of day zeitgeber time (ZT1, 7, 13 and 19-indicating number of hours after lights turned on in a 12:12 h light-dark cycle). We also investigated the diurnal response to systemic raclopride, a D2 receptor antagonist. Time of day affected the proportion of LFP oscillations within the 0-3 Hz band and the 3-8 Hz band. In both the striatum and the cerebellum, slow oscillations were strongest at ZT1 and weakest at ZT13. A 3-8 Hz oscillation was present when the slow oscillation was lowest, with peak 3-8 Hz activity occurring at ZT13. Raclopride enhanced the slow oscillations, and had the greatest effect at ZT13. Within the striatum and with the cerebellum, 0-3 Hz coherence was greatest at ZT1, when the slow oscillations were strongest. Coherence was also affected the most by raclopride at ZT13. Our results suggest that neural oscillations in the cerebellum and striatum, and the synchrony between these areas, are modulated by time of day, and that these changes are influenced by dopamine manipulation. This may provide insight into how circadian gene transcription patterns influence network electrophysiology. Future experiments will address how these network alterations are linked with behavior.


Characterization of Affective Behaviors and Motor Functions in Mice With a Striatal-Specific Deletion of Bmal1 and Per2.

  • Konrad Schoettner‎ et al.
  • Frontiers in physiology‎
  • 2022‎

The expression of circadian clock genes, either centrally or in the periphery, has been shown to play an integral role in the control of behavior. Brain region-specific downregulation of clock genes revealed behavioral phenotypes associated with neuropsychiatric disorders and neurodegenerative disease. The specific function of the clock genes as well as the underlying mechanisms that contribute to the observed phenotypes, however, are not yet fully understood. We assessed anxiety- and depressive-like behavior and motor functions in male and female mice with a conditional ablation of Bmal1 or Per2 from medium spiny neurons (MSNs) of the striatum as well as mice lacking one copy of Gpr88. Whereas the conditional knockout of Bmal1 and Per2 had mild effects on affective behaviors, a pronounced effect on motor functions was found in Bmal1 knockout mice. Subsequent investigation revealed an attenuated response of Bmal1 knockout mice to dopamine receptor type 1 agonist treatment, independently of the expression of targets of the dopamine signaling pathway or mitochondrial respiration in MSNs. The study thus suggests a potential interaction of Bmal1 within the direct dopamine signaling pathway, which may provide the link to a shared, MSN-dependent mechanism regulating affective behavior and motor function in mice.


Comprehensive mapping of regional expression of the clock protein PERIOD2 in rat forebrain across the 24-h day.

  • Valerie L Harbour‎ et al.
  • PloS one‎
  • 2013‎

In mammals, a light-entrainable clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms by synchronizing oscillators throughout the brain and body. Notably, the nature of the relation between the SCN clock and subordinate oscillators in the rest of the brain is not well defined. We performed a high temporal resolution analysis of the expression of the circadian clock protein PERIOD2 (PER2) in the rat forebrain to characterize the distribution, amplitude and phase of PER2 rhythms across different regions. Eighty-four LEW/Crl male rats were entrained to a 12-h: 12-h light/dark cycle, and subsequently perfused every 30 min across the 24-h day for a total of 48 time-points. PER2 expression was assessed with immunohistochemistry and analyzed using automated cell counts. We report the presence of PER2 expression in 20 forebrain areas important for a wide range of motivated and appetitive behaviors including the SCN, bed nucleus, and several regions of the amygdala, hippocampus, striatum, and cortex. Eighteen areas displayed significant PER2 rhythms, which peaked at different times of day. Our data demonstrate a previously uncharacterized regional distribution of rhythms of a clock protein expression in the brain that provides a sound basis for future studies of circadian clock function in animal models of disease.


The effects of circadian desynchronization on alcohol consumption and affective behavior during alcohol abstinence in female rats.

  • Christiane Meyer‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2022‎

Disruption of circadian rhythmicity distorts physiological and psychological processes and has major consequences on health and well-being. A chronic misalignment within the internal time-keeping system modulates alcohol consumption and contributes to stress-related psychiatric disorders which are known to trigger alcohol misuse and relapse. While there is growing evidence of the deleterious impact of circadian disruption on male physiology and behavior, knowledge about the effect in females remains limited. The present study aims to fill the gap by assessing the relationship between internal desynchronization and alcohol intake behavior in female rats. Female Wistar rats kept under standard 24-h, 22-h light-dark conditions, or chronic 6-h advanced phase shifts, were given intermittent access to 20% alcohol followed by an extended alcohol deprivation period. Alcohol consumption under altered light-dark (LD) conditions was assessed and emotional behavior during alcohol abstinence was evaluated. Internally desynchronization in female rats does not affect alcohol consumption but alters scores of emotionality during alcohol abstinence. Changes in affective-like behaviors were accompanied by reduced body weight gain and estrous irregularities under aberrant LD conditions. Our data suggest that internal desynchronization caused by environmental factors is not a major factor contributing to the onset and progression of alcohol abuse, but highlights the need of maintaining circadian hygiene as a supportive remedy during alcohol rehabilitation.


Light-regulated translational control of circadian behavior by eIF4E phosphorylation.

  • Ruifeng Cao‎ et al.
  • Nature neuroscience‎
  • 2015‎

The circadian (∼24 h) clock is continuously entrained (reset) by ambient light so that endogenous rhythms are synchronized with daily changes in the environment. Light-induced gene expression is thought to be the molecular mechanism underlying clock entrainment. mRNA translation is a key step of gene expression, but the manner in which clock entrainment is controlled at the level of mRNA translation is not well understood. We found that a light- and circadian clock-regulated MAPK/MNK pathway led to phosphorylation of the cap-binding protein eIF4E in the mouse suprachiasmatic nucleus of the hypothalamus, the locus of the master circadian clock in mammals. Phosphorylation of eIF4E specifically promoted translation of Period 1 (Per1) and Period 2 (Per2) mRNAs and increased the abundance of basal and inducible PER proteins, which facilitated circadian clock resetting and precise timekeeping. Together, these results highlight a critical role for light-regulated translational control in the physiology of the circadian clock.


Stress-induced changes in the expression of the clock protein PERIOD1 in the rat limbic forebrain and hypothalamus: role of stress type, time of day, and predictability.

  • Sherin Al-Safadi‎ et al.
  • PloS one‎
  • 2014‎

Stressful events can disrupt circadian rhythms in mammals but mechanisms underlying this disruption remain largely unknown. One hypothesis is that stress alters circadian protein expression in the forebrain, leading to functional dysregulation of the brain circadian network and consequent disruption of circadian physiological and behavioral rhythms. Here we characterized the effects of several different stressors on the expression of the core clock protein, PER1 and the activity marker, FOS in select forebrain and hypothalamic nuclei in rats. We found that acute exposure to processive stressors, restraint and forced swim, elevated PER1 and FOS expression in the paraventricular and dorsomedial hypothalamic nuclei and piriform cortex but suppressed PER1 and FOS levels exclusively in the central nucleus of the amygdala (CEAl) and oval nucleus of the bed nucleus of the stria terminalis (BNSTov). Conversely, systemic stressors, interleukin-1β and 2-Deoxy-D-glucose, increased PER1 and FOS levels in all regions studied, including the CEAl and BNSTov. PER1 levels in the suprachiasmatic nucleus (SCN), the master pacemaker, were unaffected by any of the stress manipulations. The effect of stress on PER1 and FOS was modulated by time of day and, in the case of daily restraint, by predictability. These results demonstrate that the expression of PER1 in the forebrain is modulated by stress, consistent with the hypothesis that PER1 serves as a link between stress and the brain circadian network. Furthermore, the results show that the mechanisms that control PER1 and FOS expression in CEAl and BNSTov are uniquely sensitive to differences in the type of stressor. Finally, the finding that the effect of stress on PER1 parallels its effect on FOS supports the idea that Per1 functions as an immediate-early gene. Our observations point to a novel role for PER1 as a key player in the interface between stress and circadian rhythms.


Bmal1 in the striatum influences alcohol intake in a sexually dimorphic manner.

  • Nuria de Zavalia‎ et al.
  • Communications biology‎
  • 2021‎

Alcohol consumption has been strongly associated with circadian clock gene expression in mammals. Analysis of clock genes revealed a potential role of Bmal1 in the control of alcohol drinking behavior. However, a causal role of Bmal1 and neural pathways through which it may influence alcohol intake have not yet been established. Here we show that selective ablation of Bmal1 (Cre/loxP system) from medium spiny neurons of the striatum induces sexual dimorphic alterations in alcohol consumption in mice, resulting in augmentation of voluntary alcohol intake in males and repression of intake in females. Per2mRNA expression, quantified by qPCR, decreases in the striatum after the deletion of Bmal1. To address the possibility that the effect of striatal Bmal1 deletion on alcohol intake and preference involves changes in the local expression of Per2, voluntary alcohol intake (two-bottle, free-choice paradigm) was studied in mice with a selective ablation of Per2 from medium spiny neurons of the striatum. Striatal ablation of Per2 increases voluntary alcohol intake in males but has no effect in females. Striatal Bmal1 and Per2 expression thus may contribute to the propensity to consume alcohol in a sex -specific manner in mice.


Mapping the co-localization of the circadian proteins PER2 and BMAL1 with enkephalin and substance P throughout the rodent forebrain.

  • Ariana Frederick‎ et al.
  • PloS one‎
  • 2017‎

Despite rhythmic expression of clock genes being found throughout the central nervous system, very little is known about their function outside of the suprachiasmatic nucleus. Determining the pattern of clock gene expression across neuronal subpopulations is a key step in understanding their regulation and how they may influence the functions of various brain structures. Using immunofluorescence and confocal microscopy, we quantified the co-expression of the clock proteins BMAL1 and PER2 with two neuropeptides, Substance P (SubP) and Enkephalin (Enk), expressed in distinct neuronal populations throughout the forebrain. Regions examined included the limbic forebrain (dorsal striatum, nucleus accumbens, amygdala, stria terminalis), thalamus medial habenula of the thalamus, paraventricular nucleus and arcuate nucleus of the hypothalamus and the olfactory bulb. In most regions examined, BMAL1 was homogeneously expressed in nearly all neurons (~90%), and PER2 was expressed in a slightly lower proportion of cells. There was no specific correlation to SubP- or Enk- expressing subpopulations. The olfactory bulb was unique in that PER2 and BMAL1 were expressed in a much smaller percentage of cells, and Enk was rarely found in the same cells that expressed the clock proteins (SubP was undetectable). These results indicate that clock genes are not unique to specific cell types, and further studies will be required to determine the factors that contribute to the regulation of clock gene expression throughout the brain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: