Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

MDM2 Antagonists Counteract Drug-Induced DNA Damage.

  • Anna E Vilgelm‎ et al.
  • EBioMedicine‎
  • 2017‎

Antagonists of MDM2-p53 interaction are emerging anti-cancer drugs utilized in clinical trials for malignancies that rarely mutate p53, including melanoma. We discovered that MDM2-p53 antagonists protect DNA from drug-induced damage in melanoma cells and patient-derived xenografts. Among the tested DNA damaging drugs were various inhibitors of Aurora and Polo-like mitotic kinases, as well as traditional chemotherapy. Mitotic kinase inhibition causes mitotic slippage, DNA re-replication, and polyploidy. Here we show that re-replication of the polyploid genome generates replicative stress which leads to DNA damage. MDM2-p53 antagonists relieve replicative stress via the p53-dependent activation of p21 which inhibits DNA replication. Loss of p21 promoted drug-induced DNA damage in melanoma cells and enhanced anti-tumor activity of therapy combining MDM2 antagonist with mitotic kinase inhibitor in mice. In summary, MDM2 antagonists may reduce DNA damaging effects of anti-cancer drugs if they are administered together, while targeting p21 can improve the efficacy of such combinations.


Efficacy, Toxicity, and Pharmacokinetics of Intra-Arterial Chemotherapy Versus Intravenous Chemotherapy for Retinoblastoma in Animal Models and Patients.

  • Anthony B Daniels‎ et al.
  • Translational vision science & technology‎
  • 2021‎

Through controlled comparative rabbit experiments and parallel patient studies, our purpose was to understand mechanisms underlying differences in efficacy and toxicity between intra-arterial chemotherapy (IAC) and intravenous chemotherapy (IVC).


Acute Inhibition of MEK Suppresses Congenital Melanocytic Nevus Syndrome in a Murine Model Driven by Activated NRAS and Wnt Signaling.

  • Jeffrey S Pawlikowski‎ et al.
  • The Journal of investigative dermatology‎
  • 2015‎

Congenital melanocytic nevus (CMN) syndrome is the association of pigmented melanocytic nevi with extra-cutaneous features, classically melanotic cells within the central nervous system, most frequently caused by a mutation of NRAS codon 61. This condition is currently untreatable and carries a significant risk of melanoma within the skin, brain, or leptomeninges. We have previously proposed a key role for Wnt signaling in the formation of melanocytic nevi, suggesting that activated Wnt signaling may be synergistic with activated NRAS in the pathogenesis of CMN syndrome. Some familial pre-disposition suggests a germ-line contribution to CMN syndrome, as does variability of neurological phenotypes in individuals with similar cutaneous phenotypes. Accordingly, we performed exome sequencing of germ-line DNA from patients with CMN to reveal rare or undescribed Wnt-signaling alterations. A murine model harboring activated NRAS(Q61K) and Wnt signaling in melanocytes exhibited striking features of CMN syndrome, in particular neurological involvement. In the first model of treatment for this condition, these congenital, and previously assumed permanent, features were profoundly suppressed by acute post-natal treatment with a MEK inhibitor. These data suggest that activated NRAS and aberrant Wnt signaling conspire to drive CMN syndrome. Post-natal MEK inhibition is a potential candidate therapy for patients with this debilitating condition.


Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade.

  • Chi Yan‎ et al.
  • Molecular cancer‎
  • 2021‎

While immune checkpoint blockade (ICB) is the current first-line treatment for metastatic melanoma, it is effective for ~ 52% of patients and has dangerous side effects. The objective here was to identify the feasibility and mechanism of RAS/RAF/PI3K pathway inhibition in melanoma to sensitize tumors to ICB therapy.


The Yin/Yan of CCL2: a minor role in neutrophil anti-tumor activity in vitro but a major role on the outgrowth of metastatic breast cancer lesions in the lung in vivo.

  • Nicole Lavender‎ et al.
  • BMC cancer‎
  • 2017‎

The role of the chemokine CCL2 in breast cancer is controversial. While CCL2 recruits and activates pro-tumor macrophages, it is also reported to enhance neutrophil-mediated anti-tumor activity. Moreover, loss of CCL2 in early development enhances breast cancer progression.


Internet-Based Assessment of Oncology Health Care Professional Learning Style and Optimization of Materials for Web-Based Learning: Controlled Trial With Concealed Allocation.

  • Christine M Micheel‎ et al.
  • Journal of medical Internet research‎
  • 2017‎

Precision medicine has resulted in increasing complexity in the treatment of cancer. Web-based educational materials can help address the needs of oncology health care professionals seeking to understand up-to-date treatment strategies.


Inhibition of the PI3K/mTOR Pathway in Breast Cancer to Enhance Response to Immune Checkpoint Inhibitors in Breast Cancer.

  • Chi Yan‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Inhibition of the PI3K/mTOR pathway suppresses breast cancer (BC) growth, enhances anti-tumor immune responses, and works synergistically with immune checkpoint inhibitors (ICI). The objective here was to identify a subclass of PI3K inhibitors that, when combined with paclitaxel, is effective in enhancing response to ICI.


Robotic versus Electromagnetic Bronchoscopy for Pulmonary LesIon AssessmeNT: the RELIANT pragmatic randomized trial.

  • Rafael Paez‎ et al.
  • Research square‎
  • 2023‎

Robotic assisted bronchoscopy has recently emerged as an alternative to electromagnetic navigational bronchoscopy for the evaluation of peripheral pulmonary lesions. While robotic assisted bronchoscopy is proposed to have several advantages, such as an easier learning curve, it is unclear if it has comparable diagnostic utility as electromagnetic navigational bronchoscopy.


Tumoral Densities of T-Cells and Mast Cells Are Associated With Recurrence in Early-Stage Lung Adenocarcinoma.

  • Michael N Kammer‎ et al.
  • JTO clinical and research reports‎
  • 2023‎

Lung cancer is the deadliest cancer in the United States and worldwide, and lung adenocarcinoma (LUAD) is the most prevalent histologic subtype in the United States. LUAD exhibits a wide range of aggressiveness and risk of recurrence, but the biological underpinnings of this behavior are poorly understood. Past studies have focused on the biological characteristics of the tumor itself, but the ability of the immune response to contain tumor growth represents an alternative or complementary hypothesis. Emerging technologies enable us to investigate the spatial distribution of specific cell types within the tumor nest and characterize this immune response. This study aimed to investigate the association between immune cell density within the primary tumor and recurrence-free survival (RFS) in stage I and II LUAD.


Complete preclinical platform for intravitreal chemotherapy drug discovery for retinoblastoma: Assessment of pharmacokinetics, toxicity and efficacy using a rabbit model.

  • Anthony B Daniels‎ et al.
  • MethodsX‎
  • 2021‎

Current melphalan-based intravitreal chemotherapy regimens for retinoblastoma vitreous seeds are effective, but cause significant ocular toxicity. We describe protocols for each step of a drug discovery pipeline for preclinical development of novel drugs to maximize efficacy and minimize toxicity. These protocols include: 1) determination of vitreous pharmacokinetics in vivo, 2) in vitro assessment of drug cytotoxicity against retinoblastoma based on empiric pharmacokinetics, 3) back-calculation of minimum injection dose to achieve therapeutic concentrations, 4) in vivo determination of maximum-tolerable intravitreal dose, using a multimodal, structural and functional toxicity-assessment platform, and 5) in vivo determination of drug efficacy using a rabbit orthotopic xenograft model of retinoblastoma vitreous seeds. We likewise describe our methodology for direct quantitation of vitreous seeds, and the statistical methodology for assessment of toxicity and efficacy in evaluating novel drugs, as well as for comparisons between drugs.•Multi-step pipeline for intravitreal chemotherapy drug discovery for retinoblastoma, using novel rabbit models.•Detailed protocols for determination of vitreous pharmacokinetics, calculation of optimal dose to inject to achieve therapeutic vitreous levels, determination of maximum tolerable dose using a novel complete toxicity-assessment platform, and in vivo efficacy against retinoblastoma using methodology to directly quantify vitreous tumor burden.•Associated statistical methodology is also presented.


My Cancer Genome: Evaluating an Educational Model to Introduce Patients and Caregivers to Precision Medicine Information.

  • Sheila V Kusnoor‎ et al.
  • AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science‎
  • 2016‎

This study tested an innovative model for creating consumer-level content about precision medicine based on health literacy and learning style principles. "Knowledge pearl" videos, incorporating multiple learning modalities, were created to explain genetic and cancer medicine concepts. Cancer patients and caregivers (n=117) were randomized to view professional-level content directly from the My Cancer Genome (MCG) website (Group A; control), content from MCG with knowledge pearls embedded (Group B), or a consumer translation, targeted at the sixth grade level, with knowledge pearls embedded (Group C). A multivariate analysis showed that Group C, but not Group B, showed greater knowledge gains immediately after viewing the educational material than Group A. Statistically significant group differences in test performance were no longer observed three weeks later. These findings suggest that adherence to health literacy and learning style principles facilitates comprehension of precision medicine concepts and that ongoing review of the educational information is necessary.


Molecular signature incorporating the immune microenvironment enhances thyroid cancer outcome prediction.

  • George J Xu‎ et al.
  • Cell genomics‎
  • 2023‎

Genomic and transcriptomic analysis has furthered our understanding of many tumors. Yet, thyroid cancer management is largely guided by staging and histology, with few molecular prognostic and treatment biomarkers. Here, we utilize a large cohort of 251 patients with 312 samples from two tertiary medical centers and perform DNA/RNA sequencing, spatial transcriptomics, and multiplex immunofluorescence to identify biomarkers of aggressive thyroid malignancy. We identify high-risk mutations and discover a unique molecular signature of aggressive disease, the Molecular Aggression and Prediction (MAP) score, which provides improved prognostication over high-risk mutations alone. The MAP score is enriched for genes involved in epithelial de-differentiation, cellular division, and the tumor microenvironment. The MAP score also identifies aggressive tumors with lymphocyte-rich stroma that may benefit from immunotherapy. Future clinical profiling of the stromal microenvironment of thyroid cancer could improve prognostication, inform immunotherapy, and support development of novel therapeutics for thyroid cancer and other stroma-rich tumors.


Safety, tolerability, and pharmacokinetics of repeated oral doses of 2-hydroxybenzylamine acetate in healthy volunteers: a double-blind, randomized, placebo-controlled clinical trial.

  • Lisa M Pitchford‎ et al.
  • BMC pharmacology & toxicology‎
  • 2020‎

2-Hydroxybenzylamine (2-HOBA) is a selective dicarbonyl electrophile scavenger being developed as a nutritional supplement to help protect against the development of conditions associated with dicarbonyl electrophile formation, such as the cognitive decline observed with Mild Cognitive Impairment or Alzheimer's disease.


National survey of patient symptoms and therapies among 707 women with a lipedema phenotype in the United States.

  • Aaron W Aday‎ et al.
  • Vascular medicine (London, England)‎
  • 2024‎

National survey data exploring the patient experience with lipedema are lacking.


Proximity of immune and tumor cells underlies response to BRAF/MEK-targeted therapies in metastatic melanoma patients.

  • Chi Yan‎ et al.
  • NPJ precision oncology‎
  • 2022‎

Acquired resistance to BRAF/MEK-targeted therapy occurs in the majority of melanoma patients that harbor BRAF mutated tumors, leading to relapse or progression and the underlying mechanism is unclear in many cases. Using multiplex immunohistochemistry and spatial imaging analysis of paired tumor sections obtained from 11 melanoma patients prior to BRAF/MEK-targeted therapy and when the disease progressed on therapy, we observed a significant increase of tumor cellularity in the progressed tumors and the close association of SOX10+ melanoma cells with CD8+ T cells negatively correlated with patient's progression-free survival (PFS). In the TCGA-melanoma dataset (n = 445), tumor cellularity exhibited additive prognostic value in the immune score signature to predict overall survival in patients with early-stage melanoma. Moreover, tumor cellularity prognoses OS independent of immune score in patients with late-stage melanoma.


Metabolic modulation by CDK4/6 inhibitor promotes chemokine-mediated recruitment of T cells into mammary tumors.

  • Roman V Uzhachenko‎ et al.
  • Cell reports‎
  • 2021‎

Inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) delay progression of metastatic breast cancer. However, complete responses are uncommon and tumors eventually relapse. Here, we show that CDK4/6i can enhance efficacy of T cell-based therapies, such as adoptive T cell transfer or T cell-activating antibodies anti-OX40/anti-4-1BB, in murine breast cancer models. This effect is driven by the induction of chemokines CCL5, CXCL9, and CXCL10 in CDK4/6i-treated tumor cells facilitating recruitment of activated CD8+ T cells, but not Tregs, into the tumor. Mechanistically, chemokine induction is associated with metabolic stress that CDK4/6i treatment induces in breast cancer cells. Despite the cell cycle arrest, CDK4/6i-treated cells retain high metabolic activity driven by deregulated PI3K/mTOR pathway. This causes cell hypertrophy and increases mitochondrial content/activity associated with oxidative stress and inflammatory stress response. Our findings uncover a link between tumor metabolic vulnerabilities and anti-tumor immunity and support further development of CDK4/6i and immunotherapy combinations.


Intravitreal HDAC Inhibitor Belinostat Effectively Eradicates Vitreous Seeds Without Retinal Toxicity In Vivo in a Rabbit Retinoblastoma Model.

  • Jessica V Kaczmarek‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2021‎

Current melphalan-based regimens for intravitreal chemotherapy for retinoblastoma vitreous seeds are effective but toxic to the retina. Thus, alternative agents are needed. Based on the known biology of histone deacetylases (HDACs) in the retinoblastoma pathway, we systematically studied whether the HDAC inhibitor belinostat is a viable, molecularly targeted alternative agent for intravitreal delivery that might provide comparable efficacy, without toxicity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: