Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Effects of AgRP inhibition on energy balance and metabolism in rodent models.

  • Roxanne Dutia‎ et al.
  • PloS one‎
  • 2013‎

Activation of brain melanocortin-4 receptors (MC4-R) by α-melanocyte-stimulating hormone (MSH) or inhibition by agouti-related protein (AgRP) regulates food intake and energy expenditure and can modulate neuroendocrine responses to changes in energy balance. To examine the effects of AgRP inhibition on energy balance, a small molecule, non-peptide compound, TTP2515, developed by TransTech Pharma, Inc., was studied in vitro and in rodent models in vivo. TTP2515 prevented AgRP from antagonizing α-MSH-induced increases in cAMP in HEK 293 cells overexpressing the human MC4-R. When administered to rats by oral gavage TTP2515 blocked icv AgRP-induced increases in food intake, weight gain and adiposity and suppression of T4 levels. In both diet-induced obese (DIO) and leptin-deficient mice, TTP2515 decreased food intake, weight gain, adiposity and respiratory quotient. TTP2515 potently suppressed food intake and weight gain in lean mice immediately after initiation of a high fat diet (HFD) but had no effect on these parameters in lean chow-fed mice. However, when tested in AgRP KO mice, TTP2515 also suppressed food intake and weight gain during HFD feeding. In several studies TTP2515 increased T4 but not T3 levels, however this was also observed in AgRP KO mice. TTP2515 also attenuated refeeding and weight gain after fasting, an effect not evident in AgRP KO mice when administered at moderate doses. This study shows that TTP2515 exerts many effects consistent with AgRP inhibition however experiments in AgRP KO mice indicate some off-target effects of this drug. TTP2515 was particularly effective during fasting and in mice with leptin deficiency, conditions in which AgRP is elevated, as well as during acute and chronic HFD feeding. Thus the usefulness of this drug in treating obesity deserves further exploration, to define the AgRP dependent and independent mechanisms by which TTP2515 exerts its effects on energy balance.


Gpr17 deficiency in POMC neurons ameliorates the metabolic derangements caused by long-term high-fat diet feeding.

  • Austin M Reilly‎ et al.
  • Nutrition & diabetes‎
  • 2019‎

Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) control energy homeostasis by sensing hormonal and nutrient cues and activating secondary melanocortin sensing neurons. We identified the expression of a G protein-coupled receptor, Gpr17, in the ARH and hypothesized that it contributes to the regulatory function of POMC neurons on metabolism.


Diurnal Patterns for Cortisol, Cortisone and Agouti-Related Protein in Human Cerebrospinal Fluid and Blood.

  • Sunil K Panigrahi‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2020‎

Cortisol in blood has a robust circadian rhythm and exerts potent effects on energy balance that are mediated in part by central mechanisms. These interactions involve orexigenic agouti-related protein (AgRP) neurons that are stimulated by glucocorticoids. However, diurnal changes in brain or cerebrospinal fluid (CSF) cortisol and cortisone, which are interconverted by 11ß-HSD1, have not been characterized in humans.


Presenting Features in 269 Patients With Clinically Nonfunctioning Pituitary Adenomas Enrolled in a Prospective Study.

  • Pamela U Freda‎ et al.
  • Journal of the Endocrine Society‎
  • 2020‎

Clinically nonfunctioning pituitary adenomas (CNFPAs) typically remain undetected until mass effect symptoms develop. However, currently, head imaging is performed commonly for many other indications, which may increase incidental discovery of CNFPAs. Since current presentation and outcome data are based on older, retrospective series, a prospective characterization of a contemporary CNFPA cohort was needed.


Defining Predictors of Weight Loss Response to Lorcaserin.

  • Aristea Sideri Gugger‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2023‎

Individual responses to weight loss (WL) medications vary widely and prediction of response remains elusive.


Blunted refeeding response and increased locomotor activity in mice lacking FoxO1 in synapsin-Cre-expressing neurons.

  • Hongxia Ren‎ et al.
  • Diabetes‎
  • 2013‎

Successful development of antiobesity agents requires detailed knowledge of neural pathways controlling body weight, eating behavior, and peripheral metabolism. Genetic ablation of FoxO1 in selected hypothalamic neurons decreases food intake, increases energy expenditure, and improves glucose homeostasis, highlighting the role of this gene in insulin and leptin signaling. However, little is known about potential effects of FoxO1 in other neurons. To address this question, we executed a broad-based neuronal ablation of FoxO1 using Synapsin promoter-driven Cre to delete floxed Foxo1 alleles. Lineage-tracing experiments showed that NPY/AgRP and POMC neurons were minimally affected by the knockout. Nonetheless, Syn-Cre-Foxo1 knockouts demonstrated a catabolic energy homeostatic phenotype with a blunted refeeding response, increased sensitivity to leptin and amino acid signaling, and increased locomotor activity, likely attributable to increased melanocortinergic tone. We confirmed these data in mice lacking the three Foxo genes. The effects on locomotor activity could be reversed by direct delivery of constitutively active FoxO1 to the mediobasal hypothalamus, but not to the suprachiasmatic nucleus. The data reveal that the integrative function of FoxO1 extends beyond the arcuate nucleus, suggesting that central nervous system inhibition of FoxO1 function can be leveraged to promote hormone sensitivity and prevent a positive energy balance.


Partially redundant enhancers cooperatively maintain Mammalian pomc expression above a critical functional threshold.

  • Daniel D Lam‎ et al.
  • PLoS genetics‎
  • 2015‎

Cell-specific expression of many genes is conveyed by multiple enhancers, with each individual enhancer controlling a particular expression domain. In contrast, multiple enhancers drive similar expression patterns of some genes involved in embryonic development, suggesting regulatory redundancy. Work in Drosophila has indicated that functionally overlapping enhancers canalize development by buffering gene expression against environmental and genetic disturbances. However, little is known about regulatory redundancy in vertebrates and in genes mainly expressed during adulthood. Here we study nPE1 and nPE2, two phylogenetically conserved mammalian enhancers that drive expression of the proopiomelanocortin gene (Pomc) to the same set of hypothalamic neurons. The simultaneous deletion of both enhancers abolished Pomc expression at all ages and induced a profound metabolic dysfunction including early-onset extreme obesity. Targeted inactivation of either nPE1 or nPE2 led to very low levels of Pomc expression during early embryonic development indicating that both enhancers function synergistically. In adult mice, however, Pomc expression is controlled additively by both enhancers, with nPE1 being responsible for ∼80% and nPE2 for ∼20% of Pomc transcription. Consequently, nPE1 knockout mice exhibit mild obesity whereas nPE2-deficient mice maintain a normal body weight. These results suggest that nPE2-driven Pomc expression is compensated by nPE1 at later stages of development, essentially rescuing the earlier phenotype of nPE2 deficiency. Together, these results reveal that cooperative interactions between the enhancers confer robustness of Pomc expression against gene regulatory disturbances and preclude deleterious metabolic phenotypes caused by Pomc deficiency in adulthood. Thus, our study demonstrates that enhancer redundancy can be used by genes that control adult physiology in mammals and underlines the potential significance of regulatory sequence mutations in common diseases.


Plasma Agouti-Related Protein and Cortisol Levels in Cushing Disease: Evidence for the Regulation of Agouti-Related Protein by Glucocorticoids in Humans.

  • Gabrielle Page-Wilson‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2019‎

Glucocorticoids regulate energy balance, in part by stimulating the orexigenic neuropeptide agouti-related protein (AgRP). AgRP neurons express glucocorticoid receptors, and glucocorticoids have been shown to stimulate AgRP gene expression in rodents.


Effects of Naltrexone on Energy Balance and Hypothalamic Melanocortin Peptides in Male Mice Fed a High-Fat Diet.

  • Sunil K Panigrahi‎ et al.
  • Journal of the Endocrine Society‎
  • 2019‎

The hypothalamic melanocortin system composed of proopiomelanocortin (POMC) and agouti-related protein (AgRP) neurons plays a key role in maintaining energy homeostasis. The POMC-derived peptides, α-MSH and β-EP, have distinct roles in this process. α-MSH inhibits food intake, whereas β-EP, an endogenous opioid, can inhibit POMC neurons and stimulate food intake. A mouse model was used to examine the effects of opioid antagonism with naltrexone (NTX) on Pomc and Agrp gene expression and POMC peptide processing in the hypothalamus in conjunction with changes in energy balance. There were clear stimulatory effects of NTX on hypothalamic Pomc in mice receiving low- and high-fat diets, yet only transient decreases in food intake and body weight gain were noted. The effects on Pomc expression were accompanied by an increase in POMC prohormone levels and a decrease in levels of the processed peptides α-MSH and β-EP. Arcuate expression of the POMC processing enzymes Pcsk1, Pcsk2, and Cpe was not altered by NTX, but expression of Prcp, an enzyme that inactivates α-MSH, increased after NTX exposure. NTX exposure also stimulated hypothalamic Agrp expression, but the effects of NTX on energy balance were not enhanced in Agrp-null mice. Despite clear stimulatory effects of NTX on Pomc expression in the hypothalamus, only modest transient decreases in food intake and body weight were seen. Effects of NTX on POMC processing, and possibly α-MSH inactivation, as well as stimulatory effects on AgRP neurons could mitigate the effects of NTX on energy balance.


Effects of Opioid Antagonism on Cerebrospinal Fluid Melanocortin Peptides and Cortisol Levels in Humans.

  • Rebecca J Gordon‎ et al.
  • Journal of the Endocrine Society‎
  • 2017‎

Hypothalamic proopiomelanocortin (POMC) is processed to α-melanocyte-stimulating hormone, which interacts with the melanocortin antagonist agouti-related protein (AgRP), to regulate energy balance. The POMC-derived opioid peptide β-endorphin (β-EP) also affects feeding behavior via interactions with brain µ-opioid receptors (MORs), including autoinhibitory interactions with MOR expressed by POMC neurons. The opioid antagonist naltrexone (NTX) stimulates POMC neurons in rodents and decreases food intake.


Preserved energy balance in mice lacking FoxO1 in neurons of Nkx2.1 lineage reveals functional heterogeneity of FoxO1 signaling within the hypothalamus.

  • Garrett Heinrich‎ et al.
  • Diabetes‎
  • 2014‎

Transcription factor forkhead box O1 (FoxO1) regulates energy expenditure (EE), food intake, and hepatic glucose production. These activities have been mapped to specific hypothalamic neuronal populations using cell type-specific knockout experiments in mice. To parse out the integrated output of FoxO1-dependent transcription from different neuronal populations and multiple hypothalamic regions, we used transgenic mice expressing Cre recombinase from the Nkx2.1 promoter to ablate loxP-flanked Foxo1 alleles from a majority of hypothalamic neurons (Foxo1KO(Nkx2.1) mice). This strategy resulted in the expected inhibition of FoxO1 expression, but only produced a transient reduction of body weight as well as a decreased body length. The transient decrease of body weight in male mice was accompanied by decreased fat mass. Male Foxo1KO(Nkx2.1) mice show food intake similar to that in wild-type controls, and, although female knockout mice eat less, they do so in proportion to a reduced body size. EE is unaffected in Foxo1KO(Nkx2.1) mice, although small increases in body temperature are present. Unlike other neuron-specific Foxo1 knockout mice, Foxo1KO(Nkx2.1) mice are not protected from diet-induced obesity. These studies indicate that, unlike the metabolic effects of highly restricted neuronal subsets (proopiomelanocortin, neuropeptide Y/agouti-related peptide, and steroidogenic factor 1), those of neurons derived from the Nkx2.1 lineage either occur in a FoxO1-independent fashion or are compensated for through developmental plasticity.


Effects of fasting, leptin, and insulin on AGRP and POMC peptide release in the hypothalamus.

  • Tracy L Breen‎ et al.
  • Brain research‎
  • 2005‎

Agouti-related protein (AGRP) and proopiomelanocortin (POMC) have opposing effects on melanocortin receptor (MC-R) signaling and energy balance, and are important targets for leptin and insulin in the hypothalamus. While food intake and leptin have documented effects on POMC and AGRP gene expression, and insulin has effects on POMC gene expression, little is known about their effects on POMC or AGRP peptide release. Here we have examined the effects of fasting, leptin, and insulin on the release of AGRP and the POMC-derived peptide gamma(3)-MSH from the perifused rat hypothalamus in vitro. In the first experiment, fasting (48 h) resulted in a significant overall decrease in gamma(3)-MSH release measured every 20 min during a 3-h baseline perifusion period and after depolarization with 56 mM KCl (p = 0.02); there was a trend towards an overall increase in the release of AGRP but this was not significant. When the ratio of gamma(3)-MSH/AGRP release was calculated at each time point, there was an overall decrease in gamma(3)-MSH/AGRP with fasting (p < 0.01). Further examination of the ratio of gamma(3)-MSH/AGRP revealed a 34% reduction (p < 0.05) in the basal area under the curve (AUC) and a 33% reduction (p < 0.01) in the post-KCl stimulated AUC in fasted vs. fed animals. In the second experiment, perifusion of hypothalamic slices with 10(-8) or 10(-7) M leptin for 2 h resulted in a significant decrease in the release of AGRP noted primarily after depolarization with KCl (p < 0.01); no effect was seen on gamma(3)-MSH release. Similarly, in a third experiment, perifusion with 10(-7) M insulin caused a significant decrease in AGRP release (p < 0.001) without affecting gamma(3)-MSH release. Thus, there is a significant decrease in gamma(3)-MSH and the ratio of gamma(3)-MSH to AGRP released during fasting, consistent with a net inhibition of hypothalamic MC-R signaling. In contrast, short-term treatment with leptin and insulin may inhibit MC-R signaling primarily by decreasing the release of AGRP.


Differentiation of hypothalamic-like neurons from human pluripotent stem cells.

  • Liheng Wang‎ et al.
  • The Journal of clinical investigation‎
  • 2015‎

The hypothalamus is the central regulator of systemic energy homeostasis, and its dysfunction can result in extreme body weight alterations. Insights into the complex cellular physiology of this region are critical to the understanding of obesity pathogenesis; however, human hypothalamic cells are largely inaccessible for direct study. Here, we developed a protocol for efficient generation of hypothalamic neurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) obtained from patients with monogenetic forms of obesity. Combined early activation of sonic hedgehog signaling followed by timed NOTCH inhibition in human ESCs/iPSCs resulted in efficient conversion into hypothalamic NKX2.1+ precursors. Application of a NOTCH inhibitor and brain-derived neurotrophic factor (BDNF) further directed the cells into arcuate nucleus hypothalamic-like neurons that express hypothalamic neuron markers proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AGRP), somatostatin, and dopamine. These hypothalamic-like neurons accounted for over 90% of differentiated cells and exhibited transcriptional profiles defined by a hypothalamic-specific gene expression signature that lacked pituitary markers. Importantly, these cells displayed hypothalamic neuron characteristics, including production and secretion of neuropeptides and increased p-AKT and p-STAT3 in response to insulin and leptin. Our results suggest that these hypothalamic-like neurons have potential for further investigation of the neurophysiology of body weight regulation and evaluation of therapeutic targets for obesity.


PC1/3 Deficiency Impacts Pro-opiomelanocortin Processing in Human Embryonic Stem Cell-Derived Hypothalamic Neurons.

  • Liheng Wang‎ et al.
  • Stem cell reports‎
  • 2017‎

We recently developed a technique for generating hypothalamic neurons from human pluripotent stem cells. Here, as proof of principle, we examine the use of these cells in modeling of a monogenic form of severe obesity: PCSK1 deficiency. The cognate enzyme, PC1/3, processes many prohormones in neuroendocrine and other tissues. We generated PCSK1 (PC1/3)-deficient human embryonic stem cell (hESC) lines using both short hairpin RNA and CRISPR-Cas9, and investigated pro-opiomelanocortin (POMC) processing using hESC-differentiated hypothalamic neurons. The increased levels of unprocessed POMC and the decreased ratios (relative to POMC) of processed POMC-derived peptides in both PCSK1 knockdown and knockout hESC-derived neurons phenocopied POMC processing reported in PC1/3-null mice and PC1/3-deficient patients. PC1/3 deficiency was associated with increased expression of melanocortin receptors and PRCP (prolylcarboxypeptidase, a catabolic enzyme for α-melanocyte stimulating hormone (αMSH)), and reduced adrenocorticotropic hormone secretion. We conclude that the obesity accompanying PCSK1 deficiency may not be primarily due to αMSH deficiency.


The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake.

  • Leona Plum‎ et al.
  • Nature medicine‎
  • 2009‎

Reduced food intake brings about an adaptive decrease in energy expenditure that contributes to the recidivism of obesity after weight loss. Insulin and leptin inhibit food intake through actions in the central nervous system that are partly mediated by the transcription factor FoxO1. We show that FoxO1 ablation in pro-opiomelanocortin (Pomc)-expressing neurons in mice (here called Pomc-Foxo1(-/-) mice) increases Carboxypeptidase E (Cpe) expression, resulting in selective increases of alpha-melanocyte-stimulating hormone (alpha-Msh) and carboxy-cleaved beta-endorphin, the products of Cpe-dependent processing of Pomc. This neuropeptide profile is associated with decreased food intake and normal energy expenditure in Pomc-Foxo1(-/-) mice. We show that Cpe expression is downregulated by diet-induced obesity and that FoxO1 deletion offsets the decrease, protecting against weight gain. Moreover, moderate Cpe overexpression in the arcuate nucleus phenocopies features of the FoxO1 mutation. The dissociation of food intake from energy expenditure in Pomc-Foxo1(-/-) mice represents a model for therapeutic intervention in obesity and raises the possibility of targeting Cpe to develop weight loss medications.


Familial X-Linked Acrogigantism: Postnatal Outcomes and Tumor Pathology in a Prenatally Diagnosed Infant and His Mother.

  • Brittany K Wise-Oringer‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2019‎

X-linked acrogigantism (X-LAG), a condition of infant-onset acrogigantism marked by elevated GH, IGF-1, and prolactin (PRL), is extremely rare. Thirty-three cases, including three kindreds, have been reported. These patients have pituitary adenomas that are thought to be mixed lactotrophs and somatotrophs.


Functional heterogeneity of POMC neurons relies on mTORC1 signaling.

  • Nicolas Saucisse‎ et al.
  • Cell reports‎
  • 2021‎

Hypothalamic pro-opiomelanocortin (POMC) neurons are known to trigger satiety. However, these neuronal cells encompass heterogeneous subpopulations that release γ-aminobutyric acid (GABA), glutamate, or both neurotransmitters, whose functions are poorly defined. Using conditional mutagenesis and chemogenetics, we show that blockade of the energy sensor mechanistic target of rapamycin complex 1 (mTORC1) in POMC neurons causes hyperphagia by mimicking a cellular negative energy state. This is associated with decreased POMC-derived anorexigenic α-melanocyte-stimulating hormone and recruitment of POMC/GABAergic neurotransmission, which is restrained by cannabinoid type 1 receptor signaling. Electrophysiology and optogenetic studies further reveal that pharmacological blockade of mTORC1 simultaneously activates POMC/GABAergic neurons and inhibits POMC/glutamatergic ones, implying that the functional specificity of these subpopulations relies on mTORC1 activity. Finally, POMC neurons with different neurotransmitter profiles possess specific molecular signatures and spatial distribution. Altogether, these findings suggest that mTORC1 orchestrates the activity of distinct POMC neurons subpopulations to regulate feeding behavior.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: