Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Interleukin-1β, Oxidative Stress, and Abnormal Calcium Handling Mediate Diabetic Arrhythmic Risk.

  • Hong Liu‎ et al.
  • JACC. Basic to translational science‎
  • 2021‎

Diabetes mellitus (DM) is associated with increased arrhythmia. Type 2 DM (T2DM) mice showed prolonged QT interval and increased ventricular arrhythmic inducibility, accompanied by elevated cardiac interleukin (IL)-1β, increased mitochondrial reactive oxygen species (mitoROS), and oxidation of the sarcoplasmic reticulum (SR) Ca2+ release channel (ryanodine receptor 2 [RyR2]). Inhibiting IL-1β and mitoROS reduced RyR2 oxidation and the ventricular arrhythmia in DM. Inhibiting SR Ca2+ leak by stabilizing the oxidized RyR2 channel reversed the diabetic arrhythmic risk. In conclusion, cardiac IL-1β mediated the DM-associated arrhythmia through mitoROS generation that enhances SR Ca2+ leak. The mechanistic link between inflammation and arrhythmias provides new therapeutic options.


Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1-mediated calcium entry in heart failure.

  • Stephen Baine‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Heart failure (HF) is characterized by asymmetrical autonomic balance. Treatments to restore parasympathetic activity in human heart failure trials have shown beneficial effects. However, mechanisms of parasympathetic-mediated improvement in cardiac function remain unclear. The present study examined the effects and underpinning mechanisms of chronic treatment with the cholinesterase inhibitor, pyridostigmine (PYR), in pressure overload HF induced by transverse aortic constriction (TAC) in mice. TAC mice exhibited characteristic adverse structural (left ventricular hypertrophy) and functional remodelling (reduced ejection fraction, altered myocyte calcium (Ca) handling, increased arrhythmogenesis) with enhanced predisposition to arrhythmogenic aberrant sarcoplasmic reticulum (SR) Ca release, cardiac ryanodine receptor (RyR2) hyper-phosphorylation and up-regulated store-operated Ca entry (SOCE). PYR treatment resulted in improved cardiac contractile performance and rhythmic activity relative to untreated TAC mice. Chronic PYR treatment inhibited altered intracellular Ca handling by alleviating aberrant Ca release and diminishing pathologically enhanced SOCE in TAC myocytes. At the molecular level, these PYR-induced changes in Ca handling were associated with reductions of pathologically enhanced phosphorylation of RyR2 serine-2814 and STIM1 expression in HF myocytes. These results suggest that chronic cholinergic augmentation alleviates HF via normalization of both canonical RyR2-mediated SR Ca release and non-canonical hypertrophic Ca signaling via STIM1-dependent SOCE.


Regulation of sarcoplasmic reticulum Ca2+ release by serine-threonine phosphatases in the heart.

  • Dmitry Terentyev‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2016‎

The amount and timing of Ca2+ release from the sarcoplasmic reticulum (SR) during cardiac cycle are the main determinants of cardiac contractility. Reversible phosphorylation of the SR Ca2+ release channel, ryanodine receptor type 2 (RyR2) is the central mechanism of regulation of Ca2+ release in cardiomyocytes. Three major serine-threonine phosphatases including PP1, PP2A and PP2B (calcineurin) have been implicated in modulation of RyR2 function. Changes in expression levels of these phosphatases, their activity and targeting to the RyR2 macromolecular complex were demonstrated in many animal models of cardiac disease and humans and are implicated in cardiac arrhythmia and heart failure. Here we review evidence in support of regulation of RyR2-mediated SR Ca2+ release by serine-threonine phosphatases and the role and mechanisms of dysregulation of phosphatases in various disease states.


Impact of ISK Voltage and Ca2+/Mg2+-Dependent Rectification on Cardiac Repolarization.

  • Peter Bronk‎ et al.
  • Biophysical journal‎
  • 2020‎

Cardiac small conductance Ca2+-activated K+ (SK) channels are activated solely by Ca2+, but the SK current (ISK) is inwardly rectified. However, the impact of inward rectification in shaping action potentials (APs) in ventricular cardiomyocytes under β-adrenergic stimulation or in disease states remains undefined. Two processes underlie this inward rectification: an intrinsic rectification caused by an electrostatic energy barrier from positively charged amino acids at the inner pore and a voltage-dependent Ca2+/Mg2+ block. Thus, Ca2+ has a biphasic effect on ISK, activating at low [Ca2+] yet inhibiting ISK at high [Ca2+]. We examined the effect of ISK rectification on APs in rat cardiomyocytes by simultaneously recording whole-cell apamin-sensitive currents and Ca2+ transients during an AP waveform and developed a computer model of SK channels with rectification features. The typical profile of ISK during AP clamp included an initial peak (mean 1.6 pA/pF) followed by decay to the point that submembrane [Ca2+] reached ∼10 μM. During the rest of the AP stimulus, ISK either plateaued or gradually increased as the cell repolarized and submembrane [Ca2+] decreased further. We used a six-state gating model combined with intrinsic and Ca2+/Mg2+-dependent rectification to simulate ISK and investigated the relative contributions of each type of rectification to AP shape. This SK channel model replicates key features of ISK recording during AP clamp showing that intrinsic rectification limits ISK at high Vm during the early and plateau phase of APs. Furthermore, the initial rise of Ca2+ transients activates, but higher [Ca2+] blocks SK channels, yielding a transient outward-like ISK trajectory. During the decay phase of Ca2+, the Ca2+-dependent block is released, causing ISK to rise again and contribute to repolarization. Therefore, ISK is an important repolarizing current, and the rectification characteristics of an SK channel determine its impact on early, plateau, and repolarization phases of APs.


Sexual dimorphism in bidirectional SR-mitochondria crosstalk in ventricular cardiomyocytes.

  • Richard T Clements‎ et al.
  • Basic research in cardiology‎
  • 2023‎

Calcium transfer into the mitochondrial matrix during sarcoplasmic reticulum (SR) Ca2+ release is essential to boost energy production in ventricular cardiomyocytes (VCMs) and match increased metabolic demand. Mitochondria from female hearts exhibit lower mito-[Ca2+] and produce less reactive oxygen species (ROS) compared to males, without change in respiration capacity. We hypothesized that in female VCMs, more efficient electron transport chain (ETC) organization into supercomplexes offsets the deficit in mito-Ca2+ accumulation, thereby reducing ROS production and stress-induced intracellular Ca2+ mishandling. Experiments using mitochondria-targeted biosensors confirmed lower mito-ROS and mito-[Ca2+] in female rat VCMs challenged with β-adrenergic agonist isoproterenol compared to males. Biochemical studies revealed decreased mitochondria Ca2+ uniporter expression and increased supercomplex assembly in rat and human female ventricular tissues vs male. Importantly, western blot analysis showed higher expression levels of COX7RP, an estrogen-dependent supercomplex assembly factor in female heart tissues vs males. Furthermore, COX7RP was decreased in hearts from aged and ovariectomized female rats. COX7RP overexpression in male VCMs increased mitochondrial supercomplexes, reduced mito-ROS and spontaneous SR Ca2+ release in response to ISO. Conversely, shRNA-mediated knockdown of COX7RP in female VCMs reduced supercomplexes and increased mito-ROS, promoting intracellular Ca2+ mishandling. Compared to males, mitochondria in female VCMs exhibit higher ETC subunit incorporation into supercomplexes, supporting more efficient electron transport. Such organization coupled to lower levels of mito-[Ca2+] limits mito-ROS under stress conditions and lowers propensity to pro-arrhythmic spontaneous SR Ca2+ release. We conclude that sexual dimorphism in mito-Ca2+ handling and ETC organization may contribute to cardioprotection in healthy premenopausal females.


NaV1.6 dysregulation within myocardial T-tubules by D96V calmodulin enhances proarrhythmic sodium and calcium mishandling.

  • Mikhail Tarasov‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Calmodulin (CaM) plays critical roles in cardiomyocytes, regulating Na+ (NaV) and L-type Ca2+ channels (LTCCs). LTCC dysregulation by mutant CaMs has been implicated in action potential duration (APD) prolongation and arrhythmogenic long QT (LQT) syndrome. Intriguingly, D96V-CaM prolongs APD more than other LQT-associated CaMs despite inducing comparable levels of LTCC dysfunction, suggesting dysregulation of other depolarizing channels. Here, we provide evidence implicating NaV dysregulation within transverse (T) tubules in D96V-CaM-associated arrhythmias. D96V-CaM induced a proarrhythmic late Na+ current (INa) by impairing inactivation of NaV1.6, but not the predominant cardiac NaV isoform NaV1.5. We investigated arrhythmia mechanisms using mice with cardiac-specific expression of D96V-CaM (cD96V). Super-resolution microscopy revealed close proximity of NaV1.6 and RyR2 within T-tubules. NaV1.6 density within these regions increased in cD96V relative to WT mice. Consistent with NaV1.6 dysregulation by D96V-CaM in these regions, we observed increased late NaV activity in T-tubules. The resulting late INa promoted aberrant Ca2+ release and prolonged APD in myocytes, leading to LQT and ventricular tachycardia in vivo. Cardiac-specific NaV1.6 KO protected cD96V mice from increased T-tubular late NaV activity and its arrhythmogenic consequences. In summary, we demonstrate that D96V-CaM promoted arrhythmias by dysregulating LTCCs and NaV1.6 within T-tubules and thereby facilitating aberrant Ca2+ release.


Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts.

  • Leroy L Cooper‎ et al.
  • The Journal of physiology‎
  • 2013‎

Ageing is associated with a blunted response to sympathetic stimulation and an increased risk of arrhythmia and sudden cardiac death. Aberrant calcium (Ca(2+)) handling is an important contributor to the electrical and contractile dysfunction associated with ageing. Yet, the specific molecular mechanisms underlying abnormal Ca(2+) handling in ageing heart remain poorly understood. In this study, we used ventricular myocytes isolated from young (5-9 months) and old (4-6 years) rabbit hearts to test the hypothesis that changes in Ca(2+) homeostasis are caused by post-translational modification of ryanodine receptors (RyRs) by mitochondria-derived reactive oxygen species (ROS) generated in the ageing heart. Changes in parameters of Ca(2+) handling were determined by measuring cytosolic and intra-sarcoplasmic reticulum (SR) Ca(2+) dynamics in intact and permeabilized ventricular myocytes using confocal microscopy. We also measured age-related changes in ROS production and mitochondria membrane potential using a ROS-sensitive dye and a mitochondrial voltage-sensitive fluorescent indicator, respectively. In permeablized myocytes, ageing did not change SERCA activity and spark frequency but decreased spark amplitude and SR Ca(2+) load suggesting increased RyR activity. Treatment with the antioxidant dithiothreitol reduced RyR-mediated SR Ca(2+) leak in permeabilized myocytes from old rabbit hearts to the level comparable to young. Moreover, myocytes from old rabbits had more depolarized mitochondria membrane potential and increased rate of ROS production. Under β-adrenergic stimulation, Ca(2+) transient amplitude, SR Ca(2+) load, and latency of pro-arrhythmic spontaneous Ca(2+) waves (SCWs) were decreased while RyR-mediated SR Ca(2+) leak was increased in cardiomyocytes from old rabbits. Additionally, with β-adrenergic stimulation, scavenging of mitochondrial ROS in myocytes from old rabbit hearts restored redox status of RyRs, which reduced SR Ca(2+) leak, ablated most SCWs, and increased latency to levels comparable to young. These data indicate that an age-associated increase of ROS production by mitochondria leads to the thiol-oxidation of RyRs, which underlies the hyperactivity of RyRs and thereby shortened refractoriness of Ca(2+) release in cardiomyocytes from the ageing heart. This mechanism probably plays an important role in the increased incidence of arrhythmia and sudden death in the ageing population.


Dietary omega-3 fatty acids promote arrhythmogenic remodeling of cellular Ca2+ handling in a postinfarction model of sudden cardiac death.

  • Andriy E Belevych‎ et al.
  • PloS one‎
  • 2013‎

It has been proposed that dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) can reduce the risk of ventricular arrhythmias in post-MI patients. Abnormal Ca(2+) handling has been implicated in the genesis of post-MI ventricular arrhythmias. Therefore, we tested the hypothesis that dietary n-3 PUFAs alter the vulnerability of ventricular myocytes to cellular arrhythmia by stabilizing intracellular Ca(2+) cycling. To test this hypothesis, we used a canine model of post-MI ventricular fibrillation (VF) and assigned the animals to either placebo (1 g/day corn oil) or n-3 PUFAs (1-4 g/day) groups. Using Ca(2+) imaging techniques, we examined the intracellular Ca(2+) handling in myocytes isolated from post-MI hearts resistant (VF-) and susceptible (VF+) to VF. Frequency of occurrence of diastolic Ca(2+) waves (DCWs) in VF+ myocytes from placebo group was significantly higher than in placebo-treated VF- myocytes. n-3 PUFA treatment did not decrease frequency of DCWs in VF+ myocytes. In contrast, VF- myocytes from the n-3 PUFA group had a significantly higher frequency of DCWs than myocytes from the placebo group. In addition, n-3 PUFA treatment increased beat-to-beat alterations in the amplitude of Ca(2+) transients (Ca(2+) alternans) in VF- myocytes. These n-3 PUFAs effects in VF- myocytes were associated with an increased Ca(2+) spark frequency and reduced sarcoplasmic reticulum Ca(2+) content, indicative of increased activity of ryanodine receptors. Thus, dietary n-3 PUFAs do not alleviate intracellular Ca(2+) cycling remodeling in myocytes isolated from post-MI VF+ hearts. Furthermore, dietary n-3 PUFAs increase vulnerability of ventricular myocytes to cellular arrhythmia in post-MI VF- hearts by destabilizing intracellular Ca(2+) handling.


Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS.

  • Shanna Hamilton‎ et al.
  • Basic research in cardiology‎
  • 2020‎

Cardiac disease is associated with deleterious emission of mitochondrial reactive oxygen species (mito-ROS), as well as enhanced oxidation and activity of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor (RyR2). The transfer of Ca2+ from the SR via RyR2 to mitochondria is thought to play a key role in matching increased metabolic demand during stress. In this study, we investigated whether augmented RyR2 activity results in self-imposed exacerbation of SR Ca2+ leak, via altered SR-mitochondrial Ca2+ transfer and elevated mito-ROS emission. Fluorescent indicators and spatially restricted genetic ROS probes revealed that both pharmacologically and genetically enhanced RyR2 activity, in ventricular myocytes from rats and catecholaminergic polymorphic ventricular tachycardia (CPVT) mice, respectively, resulted in increased ROS emission under β-adrenergic stimulation. Expression of mitochondrial Ca2+ probe mtRCamp1h revealed diminished net mitochondrial [Ca2+] with enhanced SR Ca2+ leak, accompanied by depolarization of the mitochondrial matrix. While this may serve as a protective mechanism to prevent mitochondrial Ca2+ overload, protection is not complete and enhanced mito-ROS emission resulted in oxidation of RyR2, further amplifying proarrhythmic SR Ca2+ release. Importantly, the effects of augmented RyR2 activity could be attenuated by mitochondrial ROS scavenging, and experiments with dominant-negative paralogs of the mitochondrial Ca2+ uniporter (MCU) supported the hypothesis that SR-mitochondria Ca2+ transfer is essential for the increase in mito-ROS. We conclude that in a process whereby leak begets leak, augmented RyR2 activity modulates mitochondrial Ca2+ handling, promoting mito-ROS emission and driving further channel activity in a proarrhythmic feedback cycle in the diseased heart.


CLIC4 localizes to mitochondrial-associated membranes and mediates cardioprotection.

  • Devasena Ponnalagu‎ et al.
  • Science advances‎
  • 2022‎

Mitochondrial-associated membranes (MAMs) are known to modulate organellar and cellular functions and can subsequently affect pathophysiology including myocardial ischemia-reperfusion (IR) injury. Thus, identifying molecular targets in MAMs that regulate the outcome of IR injury will hold a key to efficient therapeutics. Here, we found chloride intracellular channel protein (CLIC4) presence in MAMs of cardiomyocytes and demonstrate its role in modulating ER and mitochondrial calcium homeostasis under physiological and pathological conditions. In a murine model, loss of CLIC4 increased myocardial infarction and substantially reduced cardiac function after IR injury. CLIC4 null cardiomyocytes showed increased apoptosis and mitochondrial dysfunction upon hypoxia-reoxygenation injury in comparison to wild-type cardiomyocytes. Overall, our results indicate that MAM-CLIC4 is a key mediator of cellular response to IR injury and therefore may have a potential implication on other pathophysiological processes.


MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca2+ release in hypertrophic rat cardiomyocytes.

  • Shanna Hamilton‎ et al.
  • American journal of physiology. Heart and circulatory physiology‎
  • 2021‎

Cardiac dysfunction in heart failure (HF) and diabetic cardiomyopathy (DCM) is associated with aberrant intracellular Ca2+ handling and impaired mitochondrial function accompanied with reduced mitochondrial calcium concentration (mito-[Ca2+]). Pharmacological or genetic facilitation of mito-Ca2+ uptake was shown to restore Ca2+ transient amplitude in DCM and HF, improving contractility. However, recent reports suggest that pharmacological enhancement of mito-Ca2+ uptake can exacerbate ryanodine receptor-mediated spontaneous sarcoplasmic reticulum (SR) Ca2+ release in ventricular myocytes (VMs) from diseased animals, increasing propensity to stress-induced ventricular tachyarrhythmia. To test whether chronic recovery of mito-[Ca2+] restores systolic Ca2+ release without adverse effects in diastole, we overexpressed mitochondrial Ca2+ uniporter (MCU) in VMs from male rat hearts with hypertrophy induced by thoracic aortic banding (TAB). Measurement of mito-[Ca2+] using genetic probe mtRCamp1h revealed that mito-[Ca2+] in TAB VMs paced at 2 Hz under β-adrenergic stimulation is lower compared with shams. Adenoviral 2.5-fold MCU overexpression in TAB VMs fully restored mito-[Ca2+]. However, it failed to improve cytosolic Ca2+ handling and reduce proarrhythmic spontaneous Ca2+ waves. Furthermore, mitochondrial-targeted genetic probes MLS-HyPer7 and OMM-HyPer revealed a significant increase in emission of reactive oxygen species (ROS) in TAB VMs with 2.5-fold MCU overexpression. Conversely, 1.5-fold MCU overexpression in TABs, that led to partial restoration of mito-[Ca2+], reduced mitochondria-derived reactive oxygen species (mito-ROS) and spontaneous Ca2+ waves. Our findings emphasize the key role of elevated mito-ROS in disease-related proarrhythmic Ca2+ mishandling. These data establish nonlinear mito-[Ca2+]/mito-ROS relationship, whereby partial restoration of mito-[Ca2+] in diseased VMs is protective, whereas further enhancement of MCU-mediated Ca2+ uptake exacerbates damaging mito-ROS emission.NEW & NOTEWORTHY Defective intracellular Ca2+ homeostasis and aberrant mitochondrial function are common features in cardiac disease. Here, we directly compared potential benefits of mito-ROS scavenging and restoration of mito-Ca2+ uptake by overexpressing MCU in ventricular myocytes from hypertrophic rat hearts. Experiments using novel mito-ROS and Ca2+ biosensors demonstrated that mito-ROS scavenging rescued both cytosolic and mito-Ca2+ homeostasis, whereas moderate and high MCU overexpression demonstrated disparate effects on mito-ROS emission, with only a moderate increase in MCU being beneficial.


Pharmacological Modulation of Mitochondrial Ca2+ Content Regulates Sarcoplasmic Reticulum Ca2+ Release via Oxidation of the Ryanodine Receptor by Mitochondria-Derived Reactive Oxygen Species.

  • Shanna Hamilton‎ et al.
  • Frontiers in physiology‎
  • 2018‎

In a physiological setting, mitochondria increase oxidative phosphorylation during periods of stress to meet increased metabolic demand. This in part is mediated via enhanced mitochondrial Ca2+ uptake, an important regulator of cellular ATP homeostasis. In a pathophysiological setting pharmacological modulation of mitochondrial Ca2+ uptake or retention has been suggested as a therapeutic strategy to improve metabolic homeostasis or attenuate Ca2+-dependent arrhythmias in cardiac disease states. To explore the consequences of mitochondrial Ca2+ accumulation, we tested the effects of kaempferol, an activator of mitochondrial Ca2+ uniporter (MCU), CGP-37157, an inhibitor of mitochondrial Na+/Ca2+ exchanger, and MCU inhibitor Ru360 in rat ventricular myocytes (VMs) from control rats and rats with hypertrophy induced by thoracic aortic banding (TAB). In periodically paced VMs under β-adrenergic stimulation, treatment with kaempferol (10 μmol/L) or CGP-37157 (1 μmol/L) enhanced mitochondrial Ca2+ accumulation monitored by mitochondrial-targeted Ca2+ biosensor mtRCamp1h. Experiments with mitochondrial membrane potential-sensitive dye TMRM revealed this was accompanied by depolarization of the mitochondrial matrix. Using redox-sensitive OMM-HyPer and ERroGFP_iE biosensors, we found treatment with kaempferol or CGP-37157 increased the levels of reactive oxygen species (ROS) in mitochondria and the sarcoplasmic reticulum (SR), respectively. Confocal Ca2+ imaging showed that accelerated Ca2+ accumulation reduced Ca2+ transient amplitude and promoted generation of spontaneous Ca2+ waves in VMs paced under ISO, suggestive of abnormally high activity of the SR Ca2+ release channel ryanodine receptor (RyR). Western blot analyses showed increased RyR oxidation after treatment with kaempferol or CGP-37157 vs. controls. Furthermore, in freshly isolated TAB VMs, confocal Ca2+ imaging demonstrated that enhancement of mitochondrial Ca2+ accumulation further perturbed global Ca2+ handling, increasing the number of cells exhibiting spontaneous Ca2+ waves, shortening RyR refractoriness and decreasing SR Ca2+ content. In ex vivo optically mapped TAB hearts, kaempferol exacerbated proarrhythmic phenotype. On the contrary, incubation of cells with MCU inhibitor Ru360 (2 μmol/L, 30 min) normalized RyR oxidation state, improved intracellular Ca2+ homeostasis and reduced triggered activity in ex vivo TAB hearts. These findings suggest facilitation of mitochondrial Ca2+ uptake in cardiac disease can exacerbate proarrhythmic disturbances in Ca2+ homeostasis via ROS and enhanced activity of oxidized RyRs, while strategies to reduce mitochondrial Ca2+ accumulation can be protective.


Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart.

  • Shanna Hamilton‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Aging of the heart is associated with a blunted response to sympathetic stimulation, reduced contractility, and increased propensity for arrhythmias, with the risk of sudden cardiac death significantly increased in the elderly population. The altered cardiac structural and functional phenotype, as well as age-associated prevalent comorbidities including hypertension and atherosclerosis, predispose the heart to atrial fibrillation, heart failure, and ventricular tachyarrhythmias. At the cellular level, perturbations in mitochondrial function, excitation-contraction coupling, and calcium homeostasis contribute to this electrical and contractile dysfunction. Major determinants of cardiac contractility are the intracellular release of Ca2+ from the sarcoplasmic reticulum by the ryanodine receptors (RyR2), and the following sequestration of Ca2+ by the sarco/endoplasmic Ca2+-ATPase (SERCa2a). Activity of RyR2 and SERCa2a in myocytes is not only dependent on expression levels and interacting accessory proteins, but on fine-tuned regulation via post-translational modifications. In this paper, we review how aberrant changes in intracellular Ca2+ cycling via these proteins contributes to arrhythmogenesis in the aged heart.


PKA phosphorylation underlies functional recruitment of sarcolemmal SK2 channels in ventricular myocytes from hypertrophic hearts.

  • Shanna Hamilton‎ et al.
  • The Journal of physiology‎
  • 2020‎

Small-conductance Ca2+ -activated K+ (SK) channels expressed in ventricular myocytes are dormant in health, yet become functional in cardiac disease. SK channels are voltage independent and their gating is controlled by intracellular [Ca2+ ] in a biphasic manner. Submicromolar [Ca2+ ] activates the channel via constitutively-bound calmodulin, whereas higher [Ca2+ ] exerts inhibitory effect during depolarization. Using a rat model of cardiac hypertrophy induced by thoracic aortic banding, we found that functional upregulation of SK2 channels in hypertrophic rat ventricular cardiomyocytes is driven by protein kinase A (PKA) phosphorylation. Using site-directed mutagenesis, we identified serine-465 as the site conferring PKA-dependent effects on SK2 channel function. PKA phosphorylation attenuates ISK rectification by reducing the Ca2+ /voltage-dependent inhibition of SK channels without changing their sensitivity to activating submicromolar [Ca2+ ]i . This mechanism underlies the functional recruitment of SK channels not only in cardiac disease, but also in normal physiology, contributing to repolarization under conditions of enhanced adrenergic drive.


MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex.

  • Andriy E Belevych‎ et al.
  • PloS one‎
  • 2011‎

In heart failure (HF), arrhythmogenic spontaneous sarcoplasmic reticulum (SR) Ca(2+) release and afterdepolarizations in cardiac myocytes have been linked to abnormally high activity of ryanodine receptors (RyR2s) associated with enhanced phosphorylation of the channel. However, the specific molecular mechanisms underlying RyR2 hyperphosphorylation in HF remain poorly understood. The objective of the current study was to test the hypothesis that the enhanced expression of muscle-specific microRNAs (miRNAs) underlies the HF-related alterations in RyR2 phosphorylation in ventricular myocytes by targeting phosphatase activity localized to the RyR2. We studied hearts isolated from canines with chronic HF exhibiting increased left ventricular (LV) dimensions and decreased LV contractility. qRT-PCR revealed that the levels of miR-1 and miR-133, the most abundant muscle-specific miRNAs, were significantly increased in HF myocytes compared with controls (2- and 1.6-fold, respectively). Western blot analyses demonstrated that expression levels of the protein phosphatase 2A (PP2A) catalytic and regulatory subunits, which are putative targets of miR-133 and miR-1, were decreased in HF cells. PP2A catalytic subunit mRNAs were validated as targets of miR-133 by using luciferase reporter assays. Pharmacological inhibition of phosphatase activity increased the frequency of diastolic Ca(2+) waves and afterdepolarizations in control myocytes. The decreased PP2A activity observed in HF was accompanied by enhanced Ca(2+)/calmodulin-dependent protein kinase (CaMKII)-mediated phosphorylation of RyR2 at sites Ser-2814 and Ser-2030 and increased frequency of diastolic Ca(2+) waves and afterdepolarizations in HF myocytes compared with controls. In HF myocytes, CaMKII inhibitory peptide normalized the frequency of pro-arrhythmic spontaneous diastolic Ca(2+) waves. These findings suggest that altered levels of major muscle-specific miRNAs contribute to abnormal RyR2 function in HF by depressing phosphatase activity localized to the channel, which in turn, leads to the excessive phosphorylation of RyR2s, abnormal Ca(2+) cycling, and increased propensity to arrhythmogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: