Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Decreased Thalamocortical Connectivity in Chronic Ketamine Users.

  • Yanhui Liao‎ et al.
  • PloS one‎
  • 2016‎

Disintegration in thalamocortical integration suggests its role in the mechanistic 'switch' from recreational to dysregulated drug seeking/addiction. In this study, we aimed to address whether thalamic nuclear groups show altered functional connectivity within the cerebral cortex in chronic ketamine users. One hundred and thirty subjects (41 ketamine users and 89 control subjects) underwent rsfMRI (resting-state functional Magnetic Resonance Imaging). Based on partial correlation functional connectivity analysis we partitioned the thalamus into six nuclear groups that correspond well with human histology. Then, in the area of each nuclear group, the functional connectivity differences between the chronic ketamine user group and normal control group were investigated. We found that the ketamine user group showed significantly less connectivity between the thalamic nuclear groups and the cortical regions-of-interest, including the prefrontal cortex, the motor cortex /supplementary motor area, and the posterior parietal cortex. However, no increased thalamic connectivity was observed for these regions as compared with controls. This study provides the first evidence of abnormal thalamocortical connectivity of resting state brain activity in chronic ketamine users. Further understanding of pathophysiological mechanisms of the thalamus in addiction (ketamine addiction) may facilitate the evaluation of much-needed novel pharmacological agents for improved therapy of this complex disease.


Mitochondrial Ca2+ flux modulates spontaneous electrical activity in ventricular cardiomyocytes.

  • An Xie‎ et al.
  • PloS one‎
  • 2018‎

Ca2+ release from sarcoplasmic reticulum (SR) is known to contribute to automaticity via the cytoplasmic Na+-Ca2+ exchanger (NCX). Mitochondria participate in Ca2+ cycling. We studied the role of mitochondrial Ca2+ flux in ventricular spontaneous electrical activity.


Interleukin-1β, Oxidative Stress, and Abnormal Calcium Handling Mediate Diabetic Arrhythmic Risk.

  • Hong Liu‎ et al.
  • JACC. Basic to translational science‎
  • 2021‎

Diabetes mellitus (DM) is associated with increased arrhythmia. Type 2 DM (T2DM) mice showed prolonged QT interval and increased ventricular arrhythmic inducibility, accompanied by elevated cardiac interleukin (IL)-1β, increased mitochondrial reactive oxygen species (mitoROS), and oxidation of the sarcoplasmic reticulum (SR) Ca2+ release channel (ryanodine receptor 2 [RyR2]). Inhibiting IL-1β and mitoROS reduced RyR2 oxidation and the ventricular arrhythmia in DM. Inhibiting SR Ca2+ leak by stabilizing the oxidized RyR2 channel reversed the diabetic arrhythmic risk. In conclusion, cardiac IL-1β mediated the DM-associated arrhythmia through mitoROS generation that enhances SR Ca2+ leak. The mechanistic link between inflammation and arrhythmias provides new therapeutic options.


Knockdown of GSG2 inhibits prostate cancer progression in vitro and in vivo.

  • Feng Yu‎ et al.
  • International journal of oncology‎
  • 2020‎

Prostate cancer (PCa) is the second leading cause of cancer‑related death among men worldwide. The present study aimed to investigate the role of germ cell‑specific gene 2 protein (GSG2), also termed histone H3 phosphorylated by GSG2 at threonine‑3, in the development and progression of PCa. GSG2 expression levels in PCa tissues and para‑carcinoma tissues was detected by immunohistochemistry. The GSG2 knockdown cell model was constructed by lentivirus infection, and the knockdown efficiency was verified by qPCR and WB. In addition, the effects of shGSG2 on cell proliferation, colony formation and apoptosis were evaluated by Celigo cell counting assay, Giemsa staining and flow cytometry, respectively. Tumor development in nude mice was also detected. GSG2 expression was upregulated in PCa tissues and human PCa cell lines PC‑3 and DU 145. High expression of GSG2 in tumor samples was associated with progressed tumors. GSG2 knockdown suppressed cell proliferation and colony formation, but promoted apoptosis, which was also verified in vivo. The results of the present study revealed that GSG2 upregulation was associated with PCa progression; GSG2 knockdown inhibited cell proliferation and colony formation and induced apoptosis, and may therefore serve as a potential therapeutic target for PCa therapy.


Downregulation of HMGA1 Mediates Autophagy and Inhibits Migration and Invasion in Bladder Cancer via miRNA-221/TP53INP1/p-ERK Axis.

  • Xiaoqiang Liu‎ et al.
  • Frontiers in oncology‎
  • 2020‎

MicroRNAs (miRNAs) have been implicated in regulating the development and metastasis of human cancers. MiR-221 is reported to be an oncogene in multiple cancers, including bladder cancer (BC). Deregulation of autophagy is associated with multiple human malignant cancers. Whether and how miR-221 regulates autophagy and how miR-221 has been regulated in BC are poorly understood. This study explored the potential functions and mechanisms of miR-221 in the autophagy and tumorigenesis of BC. We showed that the downregulation of miR-221 induces autophagy via increasing TP53INP1 (tumor protein p53 inducible nuclear protein 1) and inhibits migration and invasion of BC cells through suppressing activation of extracellular signal-regulated kinase (ERK). Furthermore, the expression of miR-221 is regulated by high-mobility group AT-hook 1 (HMGA1) which is overexpressed in BC. And both miR-221 and HMGA1 are correlated with poor patient survival in BC. Finally, the downregulation of HMGA1 suppressed the proliferative, migrative, and invasive property of BC by inducing toxic autophagy via miR-221/TP53INP1/p-ERK axis. Collectively, our findings demonstrate that the downregulation of miR-221 and HMGA1 mediates autophagy in BC, and both of them are valuable therapeutic targets for BC.


Silencing LMNB1 Contributes to the Suppression of Lung Adenocarcinoma Development.

  • Dan Tang‎ et al.
  • Cancer management and research‎
  • 2021‎

Lung cancer has been recognized as the most fatal malignant tumor with the highest morbidity and mortality in recent years.


TMED3 promotes the progression and development of lung squamous cell carcinoma by regulating EZR.

  • An Xie‎ et al.
  • Cell death & disease‎
  • 2021‎

Lung squamous cell carcinoma (LUSC) has a poor clinical prognosis and lacks effective targeted therapy. The transmembrane emp24 trafficking protein 3 (TMED3) belongs to the TMED family, which is responsible for the transport of intracellular proteins. This study was to explore the clinicopathological significance and biological effects of TMED3 in LUSC. Expression of TMED3 in LUSC was detected by immunohistochemical (IHC). The loss-of-function assays were used to investigate the effects of TMED3 on proliferation, apoptosis, cell cycle, and migration of LUSC cells. The influence of TMED3 knockdown on tumor growth in vivo was evaluated by mice xenograft models. In addition, the downstream target of TMED3 was recognized by RNA sequencing and Ingenuity Pathway Analysis (IPA). Moreover, TMED3 was upregulated in LUSC tissue, which was positively correlated with pathological grade. TMED3 knockdown was involved in the regulation of LUSC cell function, such as inhibition of proliferation, reduction of colony formation, induction of apoptosis, and reduction of migration. TMED3 knockdown induced abnormalities in apoptosis-related proteins in LUSC cells. In addition, the inhibition of cell migration by TMED3 knockdown was achieved by regulating EMT. Mechanically, EZR was considered as a potential target for TMED3 to regulate the progress of LUSC. Inhibition of EZR can inhibit the progression of LUSC, and even reduce the promoting effects of TMED3 overexpression on LUSC. In conclusion, TMED3 promoted the progression and development of LUSC by EZR, which may be a novel therapeutic target for LUSC.


MTX-211 Inhibits GSH Synthesis through Keap1/NRF2/GCLM Axis and Exerts Antitumor Effects in Bladder Cancer.

  • Bing Hu‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Globally, bladder cancer (BLCA) is still the leading cause of death in patients with tumors. The function and underlying mechanism of MTX-211, an EFGR and PI3K kinase inhibitor, have not been elucidated. This study examined the function of MTX-211 in BLCA cells using in vitro and in vivo assays. RNA sequencing, quantitative real-time polymerase chain reaction, Western blotting, co-immunoprecipitation, and immunofluorescence were performed to elucidate the underlying mechanism. Our observations revealed that MTX-211 has a time- and concentration-dependent inhibitory effect on bladder cancer cell proliferation. Flow cytometry analysis showed that cell apoptosis and G0/G1 cell cycle arrest were significantly induced by MTX-211. MTX-211 inhibited intracellular glutathione (GSH) metabolism, leading to a decrease in GSH levels and an increase in reactive oxygen species. GSH supplementation partly reversed the inhibitory effects of MTX-211. Further experiments verified that MTX-211 promoted NFR2 protein ubiquitinated degradation via facilitating the binding of Keap1 and NRF2, subsequently resulting in the downregulated expression of GCLM, which plays a vital role in GSH synthesis. This study provided evidence that MTX-211 effectively inhibited BLCA cell proliferation via depleting GSH levels through Keap1/NRF2/GCLM signaling pathway. Thus, MTX-211 could be a promising therapeutic agent for cancer.


Voltage-dependent calcium channels of dog basilar artery.

  • Elena Nikitina‎ et al.
  • The Journal of physiology‎
  • 2007‎

Electrophysiological and molecular characteristics of voltage-dependent calcium (Ca(2+)) channels were studied using whole-cell patch clamp, polymerase chain reaction and Western blotting in smooth muscle cells freshly isolated from dog basilar artery. Inward currents evoked by depolarizing steps from a holding potential of -50 or -90 mV in 10 mm barium consisted of low- (LVA) and high-voltage activated (HVA) components. LVA current comprised more than half of total current in 24 (12%) of 203 cells and less than 10% of total current in 52 (26%) cells. The remaining cells (127 cells, 62%) had LVA currents between one tenth and one half of total current. LVA current was rapidly inactivating, slowly deactivating, inhibited by high doses of nimodipine and mibefradil (> 0.3 microM), not affected by omega-agatoxin GVIA (gamma100 nM), omega-conotoxin IVA (1 microM) or SNX-482 (200 nM) and probably carried by T-type Ca(2+) channels based on the presence of messenger ribonucleic acid (mRNA) and protein for Ca(v3.1) and Ca(v3.3) alpha(1) subunits of these channels. LVA currents exhibited window current with a maximum of 13% of the LVA current at -37.4 mV. HVA current was slowly inactivating and rapidly deactivating. It was inhibited by nimodipine (IC(50) = 0.018 microM), mibefradil (IC(50) = 0.39 microM) and omega-conotoxin IV (1 microM). Smooth muscle cells also contained mRNA and protein for L- (Ca(v1.2) and Ca(v1.3)), N- (Ca(v2.2)) and T-type (Ca(v3.1) and Ca(v3.3)) alpha(1) Ca(2+) channel subunits. Confocal microscopy showed Ca(v1.2) and Ca(v1.3) (L-type), Ca(v2.2) (N-type) and Ca(v3.1) and Ca(v3.3) (T-type) protein in smooth muscle cells. Relaxation of intact arteries under isometric tension in vitro to nimodipine (1 microM) and mibefradil (1 microM) but not to omega-agatoxin GVIA (100 nM), omega-conotoxin IVA (1 microM) or SNX-482 (1 microM) confirmed the functional significance of L- and T-type voltage-dependent Ca(2+) channel subtypes but not N-type. These results show that dog basilar artery smooth muscle cells express functional voltage-dependent Ca(2+) channels of multiple types.


LINC00467 Promotes Prostate Cancer Progression via M2 Macrophage Polarization and the miR-494-3p/STAT3 Axis.

  • Hao Jiang‎ et al.
  • Frontiers in oncology‎
  • 2021‎

The long non-coding RNA LINC00467 plays a vital role in many malignancies. Nevertheless, the role of LINC00467 in prostate carcinoma (PC) is unknown. Herein, we aimed to explore the mechanism by which LINC00467 regulates PC progression.


Magnesium Deficiency Causes a Reversible, Metabolic, Diastolic Cardiomyopathy.

  • Man Liu‎ et al.
  • Journal of the American Heart Association‎
  • 2021‎

Background Dietary Mg intake is associated with a decreased risk of developing heart failure, whereas low circulating Mg level is associated with increased cardiovascular mortality. We investigated whether Mg deficiency alone could cause cardiomyopathy. Methods and Results C57BL/6J mice were fed with a low Mg (low-Mg, 15-30 mg/kg Mg) or a normal Mg (nl-Mg, 600 mg/kg Mg) diet for 6 weeks. To test reversibility, half of the low-Mg mice were fed then with nl-Mg diet for another 6 weeks. Low-Mg diet significantly decreased mouse serum Mg (0.38±0.03 versus 1.14±0.03 mmol/L for nl-Mg; P<0.0001) with a reciprocal increase in serum Ca, K, and Na. Low-Mg mice exhibited impaired cardiac relaxation (ratio between mitral peak early filling velocity E and longitudinal tissue velocity of the mitral anterior annulus e, 21.1±1.1 versus 15.4±0.4 for nl-Mg; P=0.011). Cellular ATP was decreased significantly in low-Mg hearts. The changes were accompanied by mitochondrial dysfunction with mitochondrial reactive oxygen species overproduction and membrane depolarization. cMyBPC (cardiac myosin-binding protein C) was S-glutathionylated in low-Mg mouse hearts. All these changes were normalized with Mg repletion. In vivo (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride treatment during low-Mg diet improved cardiac relaxation, increased ATP levels, and reduced S-glutathionylated cMyBPC. Conclusions Mg deficiency caused a reversible diastolic cardiomyopathy associated with mitochondrial dysfunction and oxidative modification of cMyBPC. In deficiency states, Mg supplementation may represent a novel treatment for diastolic heart failure.


Altered patterns of fractional amplitude of low-frequency fluctuation and regional homogeneity in abstinent methamphetamine-dependent users.

  • An Xie‎ et al.
  • Scientific reports‎
  • 2021‎

Methamphetamine (MA) could induce functional and structural brain alterations in dependent subjects. However, few studies have investigated resting-state activity in methamphetamine-dependent subjects (MADs). We aimed to investigate alterations of brain activity during resting-state in MADs using fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo). We analyzed fALFF and ReHo between MADs (n = 70) and healthy controls (HCs) (n = 84) and performed regression analysis using MA use variables. Compared to HCs, abstinent MADs showed increased fALFF and ReHo values in the bilateral striatum, decreased fALFF in the left inferior frontal gyrus, and decreased ReHo in the bilateral anterior cingulate cortex, sensorimotor cortex, and left precuneus. We also observed the fALFF values of bilateral striatum were positively correlated with the age of first MA use, and negatively correlated with the duration of MA use. The fALFF value of right striatum was also positively correlated with the duration of abstinence. The alterations of spontaneous cerebral activity in abstinent MADs may help us probe into the neurological pathophysiology underlying MA-related dysfunction and recovery. Since MADs with higher fALFF in the right striatum had shorter MA use and longer abstinence, the increased fALFF in the right striatum might implicate early recovery during abstinence.


Wnt3a-Loaded Extracellular Vesicles Promote Alveolar Epithelial Regeneration after Lung Injury.

  • Lei Gao‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2023‎

Compromised regeneration resulting from the deactivation of Wnt/β-catenin signaling contributes to the progression of chronic obstructive pulmonary disease (COPD) with limited therapeutic options. Extracellular cytokine-induced Wnt-based signaling provides an alternative option for COPD treatment. However, the hydrophobic nature of Wnt proteins limits their purification and use. This study devises a strategy to deliver the membrane-bound wingless-type MMTV integration site family, member 3A (Wnt3a) over a long distance by anchoring it to the surface of extracellular vesicles (EVs). The newly engineered Wnt3aWG EVs are generated by co-expressing Wnt3a with two genes encoding the membrane protein, WLS, and an engineered glypican, GPC6ΔGPI -C1C2. The bioactivity of Wnt3aWG EVs is validated using a TOPFlash assay and a mesoderm differentiation model of human pluripotent stem cells. Wnt3aWG EVs activate Wnt signaling and promote cell growth following human alveolar epithelial cell injury. In an elastase-induced emphysema model, impaired pulmonary function and enlarged airspace are greatly restored by the intravenous delivery of Wnt3aWG EVs. Single-cell RNA sequencing-based analyses further highlight that Wnt3aWG EV-activated regenerative programs are responsible for its beneficial effects. These findings suggest that EV-based Wnt3a delivery represents a novel therapeutic strategy for lung repair and regeneration after injury.


The endosomal trafficking regulator LITAF controls the cardiac Nav1.5 channel via the ubiquitin ligase NEDD4-2.

  • Nilüfer N Turan‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

The QT interval is a recording of cardiac electrical activity. Previous genome-wide association studies identified genetic variants that modify the QT interval upstream of LITAF (lipopolysaccharide-induced tumor necrosis factor-α factor), a protein encoding a regulator of endosomal trafficking. However, it was not clear how LITAF might impact cardiac excitation. We investigated the effect of LITAF on the voltage-gated sodium channel Nav1.5, which is critical for cardiac depolarization. We show that overexpressed LITAF resulted in a significant increase in the density of Nav1.5-generated voltage-gated sodium current INa and Nav1.5 surface protein levels in rabbit cardiomyocytes and in HEK cells stably expressing Nav1.5. Proximity ligation assays showed co-localization of endogenous LITAF and Nav1.5 in cardiomyocytes, whereas co-immunoprecipitations confirmed they are in the same complex when overexpressed in HEK cells. In vitro data suggest that LITAF interacts with the ubiquitin ligase NEDD4-2, a regulator of Nav1.5. LITAF overexpression down-regulated NEDD4-2 in cardiomyocytes and HEK cells. In HEK cells, LITAF increased ubiquitination and proteasomal degradation of co-expressed NEDD4-2 and significantly blunted the negative effect of NEDD4-2 on INa We conclude that LITAF controls cardiac excitability by promoting degradation of NEDD4-2, which is essential for removal of surface Nav1.5. LITAF-knockout zebrafish showed increased variation in and a nonsignificant 15% prolongation of action potential duration. Computer simulations using a rabbit-cardiomyocyte model demonstrated that changes in Ca2+ and Na+ homeostasis are responsible for the surprisingly modest action potential duration shortening. These computational data thus corroborate findings from several genome-wide association studies that associated LITAF with QT interval variation.


Silencing of PSMC2 inhibits development and metastasis of prostate cancer through regulating proliferation, apoptosis and migration.

  • Qingke Chen‎ et al.
  • Cancer cell international‎
  • 2021‎

Prostate cancer is the most common malignant tumor of male genitourinary system, molecular mechanism of which is still not clear. PSMC2 (proteasome 26S subunit ATPase 2) is a key member of the 19S regulatory subunit of 26S proteasome, whose relationship with prostate cancer is rarely studied.


Mitochondrial Ca2+ Influx Contributes to Arrhythmic Risk in Nonischemic Cardiomyopathy.

  • An Xie‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Heart failure (HF) is associated with increased arrhythmia risk and triggered activity. Abnormal Ca2+ handling is thought to underlie triggered activity, and mitochondria participate in Ca2+ homeostasis.


Cyclothiazide: a subunit-specific inhibitor of GABAC receptors.

  • An Xie‎ et al.
  • The Journal of physiology‎
  • 2008‎

We tested the effects of cyclothiazide (CTZ), an agent used to block desensitization of AMPA-type glutamate receptors, on heterologously expressed GABA(C) receptors formed by homomeric rho subunits. CTZ inhibition of GABA(C) receptors was subunit specific; it produced a dose-dependent reduction of the GABA-elicited current on homomeric rho2 receptors with an IC(50) of about 12 microm, but had no significant effect on homomeric rho1 receptors. This differential sensitivity was attributable to a single amino acid located on the second transmembrane domain of the rho subunits. Mutating the residue at this position from serine to proline on the rho2 subunit eliminated CTZ sensitivity, whereas switching proline to serine on the rho1 subunit made the receptor CTZ sensitive. The inhibitory properties of CTZ were consistent with its action as a channel blocker on the receptors formed by rho2 subunits. The effect showed a small degree of voltage dependence, and was due mainly to a non-competitive mechanism that reduced the maximum response elicited by GABA. In addition, the prominent membrane current rebound when co-application of GABA and CTZ was terminated suggests that the binding site for CTZ on the GABA(C) receptor is distinct from that for GABA, and that CTZ acts as a non-competitive antagonist on the GABA(C) receptor. CTZ inhibited the open channel of the GABA(C) receptor with a time constant of about 0.4 s, but the kinetics were approximately 10-fold slower when GABA is absent. The ability of CTZ to interact with various types of neurotransmitter receptors indicates that the drug has multiple actions in the CNS.


GTP-binding protein Di-RAS3 diminishes the migration and invasion of non-small cell lung cancer by inhibiting the RAS/extracellular-regulated kinase pathway.

  • Peng Kuang‎ et al.
  • Bioengineered‎
  • 2022‎

The GTP-binding protein Di-Ras3 (DIRAS3) has been established as a maternally imprinted tumor suppressor gene. Growing evidence has correlated the DIRAS3 gene with tumor progression, but its role in non-small cell lung cancer (NSCLC) is rarely reported. Accordingly, the current study sought to evaluate the role and mechanism of DIRAS3 in NSCLC cell progression. First, we uncovered that DIRAS3 was poorly expressed in NSCLC tissues and cells. Subsequently, we examined the effect of DIRAS3 over-expression or knockdown in different lung cancer cells on their malignant phenotypes, with the help of transwell cell migration and invasion assays, and Western blot analyses. It was found that the over-expression of DIRAS3 inhibited the migration and invasion of A549 cells or H520 cells, whereas knockdown of DIRAS3 led to opposing trends. In addition, over-expression of DIRAS3 attenuated the tumor growth and reduced the number of lung tumor nodules. Mechanistically, DIRAS3 may inhibit the migration and invasion of NSCLC cells by inhibiting the RAS/extracellular-regulated kinase (ERK) signaling pathway. Collectively, our findings indicate that DIRAS3 could serve as a potential therapeutic target biomarker for NSCLC.


Regulation of sarcoplasmic reticulum Ca2+ release by serine-threonine phosphatases in the heart.

  • Dmitry Terentyev‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2016‎

The amount and timing of Ca2+ release from the sarcoplasmic reticulum (SR) during cardiac cycle are the main determinants of cardiac contractility. Reversible phosphorylation of the SR Ca2+ release channel, ryanodine receptor type 2 (RyR2) is the central mechanism of regulation of Ca2+ release in cardiomyocytes. Three major serine-threonine phosphatases including PP1, PP2A and PP2B (calcineurin) have been implicated in modulation of RyR2 function. Changes in expression levels of these phosphatases, their activity and targeting to the RyR2 macromolecular complex were demonstrated in many animal models of cardiac disease and humans and are implicated in cardiac arrhythmia and heart failure. Here we review evidence in support of regulation of RyR2-mediated SR Ca2+ release by serine-threonine phosphatases and the role and mechanisms of dysregulation of phosphatases in various disease states.


Structural Imaging-Based Biomarkers for Detecting Craving and Predicting Relapse in Subjects With Methamphetamine Dependence.

  • Chang Qi‎ et al.
  • Frontiers in psychiatry‎
  • 2020‎

Background: Craving is the predictor of relapse, and insula cortex (IC) is a critical neural substrate for craving and drug seeking. This study investigated whether IC abnormalities among MA users can detect craving state and predict relapse susceptibility. Methods: A total of 142 subjects with a history of MA dependence completed structural MRI (sMRI) scans, and 30 subjects (10 subjects relapsed) completed 4-month follow-up scans. MA craving was measured by the Visual Analog Scale for Craving. Abnormalities of IC gray matter volume (GMV) between the subjects with and without craving were investigated by voxel-based morphometry (VBM). The receiver operating characteristic (ROC) analysis was performed for the region-of-interest (ROI) of IC GMV to assess the diagnostic accuracy. Results: By comparing whole-brain volume maps, this study found that subjects without craving (n = 64) had a significantly extensive decrease in IC GMV (family-wise error correction, p < 0.05) than subjects with craving group (n = 78). The ROI of IC GMV had a significantly positive correlation with the craving scores reported by MA users. The ROC analysis showed a good discrimination (area under curve is 0.82/0.80 left/right) for IC GMV between the subjects with and without craving. By selecting Youden index cut-off point from whole model group, calculated sensitivity/specificity was equal to 78/70% and 70/75% for left and right IC, respectively. By applying the above optimal cut-off values to 30 follow-up subjects as validations, the results showed a similar sensitivity (73-80%) and specificity (73-80%) for detecting craving state as model group. For predicting relapse susceptibility, the sensitivity (50-55%) was low and the specificity (80-90%) was high. Conclusions: Our study provides the first evidence that sMRI may be used to diagnosis the craving state in MA users based on optimal cut-off values, which could be served as MRI bio-markers and an objective measure of craving state.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: