Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK.

  • Yu-yi Lin‎ et al.
  • Nature‎
  • 2012‎

First identified as histone-modifying proteins, lysine acetyltransferases (KATs) and deacetylases (KDACs) antagonize each other through modification of the side chains of lysine residues in histone proteins. Acetylation of many non-histone proteins involved in chromatin, metabolism or cytoskeleton regulation were further identified in eukaryotic organisms, but the corresponding enzymes and substrate-specific functions of the modifications are unclear. Moreover, mechanisms underlying functional specificity of individual KDACs remain enigmatic, and the substrate spectra of each KDAC lack comprehensive definition. Here we dissect the functional specificity of 12 critical human KDACs using a genome-wide synthetic lethality screen in cultured human cells. The genetic interaction profiles revealed enzyme-substrate relationships between individual KDACs and many important substrates governing a wide array of biological processes including metabolism, development and cell cycle progression. We further confirmed that acetylation and deacetylation of the catalytic subunit of the adenosine monophosphate-activated protein kinase (AMPK), a critical cellular energy-sensing protein kinase complex, is controlled by the opposing catalytic activities of HDAC1 and p300. Deacetylation of AMPK enhances physical interaction with the upstream kinase LKB1, leading to AMPK phosphorylation and activation, and resulting in lipid breakdown in human liver cells. These findings provide new insights into previously underappreciated metabolic regulatory roles of HDAC1 in coordinating nutrient availability and cellular responses upstream of AMPK, and demonstrate the importance of high-throughput genetic interaction profiling to elucidate functional specificity and critical substrates of individual human KDACs potentially valuable for therapeutic applications.


Selective Interactions of Mouse Melanocortin Receptor Accessory Proteins with Somatostatin Receptors.

  • Meng Wang‎ et al.
  • Cells‎
  • 2022‎

Somatostatin receptors (SSTRs) are G protein-coupled receptors (GPCRs) known to regulate exocrine secretion, neurotransmission, and inhibit endogenous cell proliferation. SSTR subtypes (SSTR1-SSTR5) exhibit homo- or heterodimerization with unique signaling characteristics. Melanocortin receptor accessory protein 1 (MRAP1) functions as an allosteric modulator of melanocortin receptors and some other GPCRs. In this study, we investigated the differential interaction of MRAP1 and SSTRs and examined the pharmacological modulation of MRAP1 on mouse SSTR2/SSTR3 and SSTR2/SSTR5 heterodimerization in vitro. Our results show that the mouse SSTR2 forms heterodimers with SSTR3 and SSTR5 and that MRAP1 selectively interacts with SSTR3 and SSTR5 but not SSTR2. The interactive binding sites of SSTR2/SSTR3 or SSTR2/SSTR5 with MRAP1 locate on SSTR3 and SSTR5 but not SSTR2. The binding sites of MRAP1 to SSTR3 are extensive, while the ones of SSTR5 are restricted on transmembrane region six and seven. The heterodimerization of mouse SSTR2, SSTR3, and SSTR5 can be modulated by binding protein in addition to an agonist. Upregulation of extracellular signal-regulated kinases phosphorylation, p27Kip1, and increased cell growth inhibition with the co-expression of SSTR2/SSTR3 or SSTR2/SSTR5 with MRAP1 suggest a regulatory effect of MRAP1 on anti-proliferative response of two SSTR heterodimers. Taken together, these results provide a new insight of MRAP1 on the maintenance and regulation of mouse SSTR dimers which might be helpful to better understand the molecular mechanism involving SSTRs in tumor biology or other human disorders.


Antagonistic Self-Organizing Patterning Systems Control Maintenance and Regeneration of the Anteroposterior Axis in Planarians.

  • Tom Stückemann‎ et al.
  • Developmental cell‎
  • 2017‎

Planarian flatworms maintain their body plan in the face of constant internal turnover and can regenerate from arbitrary tissue fragments. Both phenomena require self-maintaining and self-organizing patterning mechanisms, the molecular mechanisms of which remain poorly understood. We show that a morphogenic gradient of canonical Wnt signaling patterns gene expression along the planarian anteroposterior (A/P) axis. Our results demonstrate that gradient formation likely occurs autonomously in the tail and that an autoregulatory module of Wnt-mediated Wnt expression both shapes the gradient at steady state and governs its re-establishment during regeneration. Functional antagonism between the tail Wnt gradient and an unknown head patterning system further determines the spatial proportions of the planarian A/P axis and mediates mutually exclusive molecular fate choices during regeneration. Overall, our results suggest that the planarian A/P axis is patterned by self-organizing patterning systems deployed from either end that are functionally coupled by mutual antagonism.


The mid-developmental transition and the evolution of animal body plans.

  • Michal Levin‎ et al.
  • Nature‎
  • 2016‎

Animals are grouped into ~35 'phyla' based upon the notion of distinct body plans. Morphological and molecular analyses have revealed that a stage in the middle of development--known as the phylotypic period--is conserved among species within some phyla. Although these analyses provide evidence for their existence, phyla have also been criticized as lacking an objective definition, and consequently based on arbitrary groupings of animals. Here we compare the developmental transcriptomes of ten species, each annotated to a different phylum, with a wide range of life histories and embryonic forms. We find that in all ten species, development comprises the coupling of early and late phases of conserved gene expression. These phases are linked by a divergent 'mid-developmental transition' that uses species-specific suites of signalling pathways and transcription factors. This mid-developmental transition overlaps with the phylotypic period that has been defined previously for three of the ten phyla, suggesting that transcriptional circuits and signalling mechanisms active during this transition are crucial for defining the phyletic body plan and that the mid-developmental transition may be used to define phylotypic periods in other phyla. Placing these observations alongside the reported conservation of mid-development within phyla, we propose that a phylum may be defined as a collection of species whose gene expression at the mid-developmental transition is both highly conserved among them, yet divergent relative to other species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: