Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 67 papers

MitoKATP regulating HIF/miR210/ISCU signaling axis and formation of a positive feedback loop in chronic hypoxia-induced PAH rat model.

  • Yang Lu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2017‎

In the present study, we studied the mechanism of mitochondrial ATP-sensitive potassium (mitoKATP) channels regulating hypoxia-inducible factor (HIF)-1α/microRNA (miR)-210/mitochondrial iron-sulfur protein integrin (ISCU) signaling axis and forming a positive feedback loop in chronic hypoxia-induced pulmonary arterial hypertension (PAH) by using in vivo animal model. Two hundred healthy adult SPF Sprague-Dawley rats were randomly divided into five groups: Control, a mimic miR-210 agent (mimic-210) intervention, a miR-210 inhibitor (anti-210) intervention, a chronic PAH and an anti-210 intervention PAH groups, with 40 rats in each group. After the chronic PAH rat model was successfully established, the rats were intervened with mimic-210 and anti-210. The pulmonary artery smooth muscle cells (PASMCs) of rats in each group were acutely isolated and the activity of mitoKATP and mitochondria-derived oxygen free radicals reactive oxygen species (ROS) was detected. RT-qPCR was used to detect the gene of HIF-1α/miR-210/ISCU and western blot analysis was used to detect the protein of HIF-1α and ISCU. The gene and protein expression were detected again after mitoKATP-specific opener diazoxide and blocker 5-HD was given via tail vein and took effect on each group of rats, respectively. Additionally, the indicators were detected again after ISCU recombinant protein was given via tail vein and ISCU small interfering RNA (siRNA) via nasal feeding and took effect on each group of rats, respectively. It was found that the activity of mitoKATP and ROS and the gene and protein levels of HIF-1α/miR-210/ISCU of the mimic-210 group were significantly higher than those of the control group while that of the anti-210 group was significantly reduced (P<0.05). The indicators in the chronic PAH group were significantly higher than those of the control group while those of the anti-210 intervention PAH group were significantly reduced (P<0.05). The indicators of all the groups were increased after being given mitoKATP specific opener diazoxide. The indicators of all the groups were significantly reduced after receiving blocker 5-HD (P<0.05). The indicators of all the groups were significantly reduced after given ISCU recombinant protein. The indicators of all the groups increased following ISCU siRNA, and there was a statistically significant difference (P<0.05). In conclusion, the mechanism of mitoKATP regulating the HIF-1α/miR-210/ISCU signaling axis and formation of a positive feedback loop exists in the PAH rat model.


Inhibiting autophagy potentiates the anticancer activity of IFN1@/IFNα in chronic myeloid leukemia cells.

  • Shan Zhu‎ et al.
  • Autophagy‎
  • 2013‎

IFN1@ (interferon, type 1, cluster, also called IFNα) has been extensively studied as a treatment for patients with chronic myeloid leukemia (CML). The mechanism of anticancer activity of IFN1@ is complex and not well understood. Here, we demonstrate that autophagy, a mechanism of cellular homeostasis for the removal of dysfunctional organelles and proteins, regulates IFN1@-mediated cell death. IFN1@ activated the cellular autophagic machinery in immortalized or primary CML cells. Activation of JAK1-STAT1 and RELA signaling were required for IFN1@-induced expression of BECN1, a key regulator of autophagy. Moreover, pharmacological and genetic inhibition of autophagy enhanced IFN1@-induced apoptosis by activation of the CASP8-BID pathway. Taken together, these findings provide evidence for an important mechanism that links autophagy to immunotherapy in leukemia.


Clinical Significance of Combined Weight-Bearing and Non-Weight-Bearing Positions and MRI Examination in Evaluating Genu Varus.

  • Shan Zhu‎ et al.
  • Orthopaedic surgery‎
  • 2020‎

To siscuss the clinical significance of the early diagnosis of knee varus and knee osteoarthritis with the combination of negative position and non-negative position and radiography.


Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression.

  • Qi Wu‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

Emerging evidence supports the pivotal roles of adipocytes in breast cancer progression. Tumour induced beige/brown adipose tissue differentiation contributes to the hypermetabolic state of the breast cancer. However, the mediators and mechanisms remain unclear.


Thyroxine Affects Lipopolysaccharide-Induced Macrophage Differentiation and Myocardial Cell Apoptosis via the NF-κB p65 Pathway Both In Vitro and In Vivo.

  • Shan Zhu‎ et al.
  • Mediators of inflammation‎
  • 2019‎

Numerous studies have demonstrated that the inflammatory response is involved in the progression of lipopolysaccharide- (LPS-) induced myocardial cell apoptosis. Accumulating evidence has shown that thyroxine participates in diseases by downregulating the inflammatory response. This study aimed at investigating whether thyroxine alleviates LPS-induced myocardial cell apoptosis.


GDF15 promotes glioma stem cell-like phenotype via regulation of ERK1/2-c-Fos-LIF signaling.

  • Shan Zhu‎ et al.
  • Cell death discovery‎
  • 2021‎

Growth differentiation factor 15 (GDF15), a member of the transforming growth factor β family, is associated with tumor progression, metastasis, and cell apoptosis. However, controversy persists regarding the role of GDF15 in different tumor types, and its function in glioma stem cells (GSCs) remains unknown. Here, we report that GDF15 promotes the GSC-like phenotype in GSC-like cells (GSCLCs) through the activation of leukemia inhibitor factor (LIF)-STAT3 signaling. Mechanistically, GDF15 was found to upregulate expression of the transcription factor c-Fos, which binds to the LIF promoter, leading to enhanced transcription of LIF in GSCLCs. Furthermore, GDF15 may activate the ERK1/2 signaling pathway in GSCLCs, and the upregulation of LIF expression and the GSC-like phenotype was dependent on ERK1/2 signaling. In addition, the small immunomodulator imiquimod induced GDF15 expression, which in turn activated the LIF-STAT3 pathway and subsequently promoted the GSC-like phenotype in GSCLCs. Thus, our results demonstrate that GDF15 can act as a proliferative and pro-stemness factor for GSCs, and therefore, it may represent a potential therapeutic target in glioma treatment.


Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway.

  • Shan Zhu‎ et al.
  • Life sciences‎
  • 2021‎

Prostate cancer is one of the most frequent causes of cancer death in men worldwide, and novel drugs for prostate cancer therapies are still being developed. Palmitic acid is a common saturated long-chain fatty acid that is known to exhibit anti-inflammatory and metabolic regulatory effects and antitumor activities in several types of tumors. The present study aims to explore the antiproliferative and antimetastatic activities of palmitic acid on human prostate cancer cells and the underlying mechanism.


Targeting NF-κB-dependent alkaliptosis for the treatment of venetoclax-resistant acute myeloid leukemia cells.

  • Shan Zhu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Venetoclax is a highly selective BCL2 inhibitor widely used in the treatment of leukemia, especially chronic lymphocytic leukemia and acute myeloid leukemia (AML). However, long-term use of venetoclax may lead to secondary drug resistance, which constitutes an important obstacle to prolonging the duration of the therapeutic response. Here, we show that the acquired resistance to venetoclax in human AML cell lines depends on NF-κB activation rather than on the upregulation of anti-apoptotic BCL2L1 expression. Moreover, alkaliptosis induced by the small molecular compound JTC801, but not necroptosis and ferroptosis, inhibits the growth of venetoclax-resistant AML cells in vitro and in xenograft mouse models. Mechanistically, NF-κB-mediated CA9 downregulation is required for intracellular pH upregulation, thereby inducing alkaliptosis in venetoclax-resistant cells. These findings provide a new strategy to selectively remove venetoclax-resistant AML cells.


Correlation Between Immune Lymphoid Cells and Plasmacytoid Dendritic Cells in Human Colon Cancer.

  • Jing Wu‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Innate lymphoid cells (ILCs), so far studied mostly in mouse models, are important tissue-resident innate immune cells that play important roles in the colorectal cancer microenvironment and maintain mucosal tissue homeostasis. Plasmacytoid dendritic cells (pDCs) present complexity in various tumor types and are correlated with poor prognosis. pDCs can promote HIV-1-induced group 3 ILC (ILC3) depletion through the CD95 pathway. However, the role of ILC3s in human colon cancer and their correlation with other immune cells, especially pDCs, remain unclear.


Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma.

  • Jie Li‎ et al.
  • Oncotarget‎
  • 2014‎

Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment.


The STING-STAT6 pathway drives Cas9-induced host response in human monocytes.

  • Rui Kang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Cas9 (CRISPR associated protein 9) is an RNA-guided DNA endonuclease enzyme derived from Streptococcus that has been widely used for genome editing in a variety of organisms, including humans. Here, we report that exogenous Cas9 protein can elicit an inflammatory immune response through the release of MIP3α, CD40L, and MPO in primary human peripheral blood mononuclear cells and human monocytic cell lines (THP1). Inhibition of the STING-STAT6 pathway blocks Cas9-induced proinflammatory mediator release. These results suggest that targeting the STING-STAT6 axis may prevent host immune responses in human gene therapy with the CRISPR-Cas9 system.


Association between tumor architecture derived from generalized Q-space MRI and survival in glioblastoma.

  • Erik N Taylor‎ et al.
  • Oncotarget‎
  • 2017‎

While it is recognized that the overall resistance of glioblastoma to treatment may be related to intra-tumor patterns of structural heterogeneity, imaging methods to assess such patterns remain rudimentary.


Lipid Peroxidation Drives Gasdermin D-Mediated Pyroptosis in Lethal Polymicrobial Sepsis.

  • Rui Kang‎ et al.
  • Cell host & microbe‎
  • 2018‎

Sepsis is a life-threatening condition caused by pathogen infection and associated with pyroptosis. Pyroptosis occurs upon activation of proinflammatory caspases and their subsequent cleavage of gasdermin D (GSDMD), resulting in GSDMD N-terminal fragments that form membrane pores to induce cell lysis. Here, we show that antioxidant defense enzyme glutathione peroxidase 4 (GPX4) and its ability to decrease lipid peroxidation, negatively regulate macrophage pyroptosis, and septic lethality in mice. Conditional Gpx4 knockout in myeloid lineage cells increases lipid peroxidation-dependent caspase-11 activation and GSDMD cleavage. The resultant N-terminal GSDMD fragments then trigger macrophage pyroptotic cell death in a phospholipase C gamma 1 (PLCG1)-dependent fashion. Administration of the antioxidant vitamin E that reduces lipid peroxidation, chemical inhibition of PLCG1, or genetic Caspase-11 deletion or Gsdmd inactivation prevents polymicrobial sepsis in Gpx4-/- mice. Collectively, this study suggests that lipid peroxidation drives GSDMD-mediated pyroptosis and hence constitutes a potential therapeutic target for lethal infection.


The Circadian Clock Controls Immune Checkpoint Pathway in Sepsis.

  • Wenjun Deng‎ et al.
  • Cell reports‎
  • 2018‎

Sepsis and septic shock are associated with life-threatening organ dysfunction caused by an impaired host response to infections. Although circadian clock disturbance impairs the early inflammatory response, its impact on post-septic immunosuppression remains poorly elucidated. Here, we show that Bmal1, a core circadian clock gene, plays a role in the regulation of host immune responses in experimental sepsis. Mechanistically, Bmal1 deficiency in macrophages increases PKM2 expression and lactate production, which is required for expression of the immune checkpoint protein PD-L1 in a STAT1-dependent manner. Consequently, targeted ablation of Pkm2 in myeloid cells or administration of anti-PD-L1-neutralizing antibody or supplementation with recombinant interleukin-7 (IL-7) facilitates microbial clearance, inhibits T cell apoptosis, reduces multiple organ dysfunction, and reduces septic death in Bmal1-deficient mice. Collectively, these findings suggest that the circadian clock controls the immune checkpoint pathway in macrophages and therefore represents a potential therapeutic target for lethal infection.


Breast carcinoma in situ: An observational study of tumor subtype, treatment and outcomes.

  • Qi Wu‎ et al.
  • Oncotarget‎
  • 2017‎

To evaluate the clinical presentation, treatment and outcome of patients with breast carcinoma in situ (BCIS) with special emphasis on the role of the tumor subtype and local treatment in these patients.


Ceramide kinase mediates intrinsic resistance and inferior response to chemotherapy in triple-negative breast cancer by upregulating Ras/ERK and PI3K/Akt pathways.

  • Shan Zhu‎ et al.
  • Cancer cell international‎
  • 2021‎

Clinical management of triple-negative breast cancer (TNBC) patients remain challenging because of the development of chemo-resistance. Identification of biomarkers for risk stratification of chemo-resistance and therapeutic decision-making to overcome such resistance is thus necessary.


Interleukin-22 Deficiency Reduces Angiotensin II-Induced Aortic Dissection and Abdominal Aortic Aneurysm in ApoE-/- Mice.

  • Yuan Wang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Our previous study showed that interleukin-22 (IL-22) levels were increased in patients with aortic dissection (AD). This study evaluated the effects of IL-22 on AD/abdominal aortic aneurysm (AAA) formation in angiotensin II (Ang II)-infused ApoE-/- mice.


A Novel C Type CpG Oligodeoxynucleotide Exhibits Immunostimulatory Activity In Vitro and Enhances Antitumor Effect In Vivo.

  • Tete Li‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

C type CpG oligodeoxynucleotides (CpG-C ODNs), possessing the features of both A type and B type CpG ODNs, exert a variety of immunostimulatory activities and have been demonstrated as an effective antitumor immunotherapy. Based on the structural characteristics, we designed 20 potential ODNs with the aim of synthesizing an optimal, novel CpG-C ODN specific to human and murine Toll-like receptor 9 (TLR9). We also sought to investigate the in vitro immunostimulatory and in vivo antitumor effects of the novel CpG-C ODN.


VmPacC-mediated pH regulation of Valsa mali confers to host acidification identified by comparative proteomics analysis.

  • Liangsheng Xu‎ et al.
  • Stress biology‎
  • 2023‎

Apple valsa canker caused by the Ascomycete fungus Valsa mali is one of the most serious diseases of apple, resulting in huge economic losses in the apple-growing area of China. Previous study found that the pathogen could acidify the infected tissues to make lower ambient pH (from 6.0 to 3.5) for their successfully colonization. The pH signaling transcription factor VmPacC is required for acidification of its environment and for full virulence in V. mali. It is known that the functional cooperation of proteins secreted by V. mali plays pivotal role in its successful colonization of host plants. In this study, we used tandem mass tag (TMT) labeling coupled with LC-MS/MS-based quantitative proteomics to analyze the VmPacC-mediated pH regulation in V. mali, focusing on differentially expressed proteins (DEPs). We identified 222 DEPs specific to VmPacC deletion, and 921 DEPs specific to different pH conditions (pH 6.0 and 3.4). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these DEPs were mainly involved in pathways associated with carbon metabolism, biosynthesis of antibiotics, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, glutathione metabolism, ribosomes, and pentose phosphate pathways. Additionally, we identified 119 DEPs that were shared among the VmPacC deletion mutant and different pH conditions, which were mainly related to energy metabolism pathways, providing the energy required for the hyphal growth and responses to environmental stresses. A protein-protein interaction (PPI) network analysis indicated that most of the shared proteins were mapped to an interaction network with a medium confidence score of 0.4. Notably, one uncharacterized protein (KUI69106.1), and two known proteins (heat shock protein 60 (KUI73579.1), aspartate aminotransferase (KUI73864.1)) located in the core of the network were highly connected (with ≥ 38 directed edges) with the other shared DEPs. Our results suggest that VmPacC participates in the pathogen's regulation to ambient pH through the regulation of energy metabolism pathways such as the glycolysis/gluconeogenesis pathway and TCA cycle. Finally, we proposed a sophisticated molecular regulatory network to explain pH decrease in V. mali. Our study, by providing insights into V. mali regulating pH, helps to elucidate the mechanisms of host acidification during pathogen infection.


Tumour-originated exosomal miR-155 triggers cancer-associated cachexia to promote tumour progression.

  • Qi Wu‎ et al.
  • Molecular cancer‎
  • 2018‎

Emerging evidence supports the pivotal roles of cancer-associated cachexia in breast cancer progression. However, the mediators and mechanisms that mediate cancer-induced cachexia remain unclear. Here, we show that breast cancer-derived exosomes alter adipocytes and muscle cells in terms of increased catabolism characterized by the release of metabolites. Likewise, tumour cells cocultivated with mature adipocytes or C2C12 exhibit an aggressive phenotype through inducing epithelial-mesenchymal transition. Mechanistically, we show that cancer cell-secreted miR-155 promotes beige/brown differentiation and remodel metabolism in resident adipocytes by downregulating the PPARγ expression, but does not significantly affect biological conversion in C2C12. In vitro the use of propranolol ameliorates tumour exosomes-associated cachectic wasting through upregulating the PPARγ expression. These results demonstrate that cancer-derived exosomes reprogram systemic energy metabolism and accelerate cancer-associated cachexia to facilitate tumour progression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: