2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Gas6 stimulates angiogenesis of human retinal endothelial cells and of zebrafish embryos via ERK1/2 signaling.

  • Young Sook Kim‎ et al.
  • PloS one‎
  • 2014‎

To determine if growth arrest-specific 6 (Gas6) plays an important role in the regulation of angiogenesis in human retinal microvascular endothelial cells (HRMECs) and in vessel development of zebrafish.


Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma.

  • Tae-Min Kim‎ et al.
  • Oncotarget‎
  • 2015‎

Although the colorectal adenoma-to-carcinoma sequence represents a classical cancer progression model, the evolution of the mutational landscape underlying this model is not fully understood. In this study, we analyzed eight synchronous pairs of colorectal high-grade adenomas and carcinomas, four microsatellite-unstable (MSU) and four-stable (MSS) pairs, using whole-exome sequencing. In the MSU adenoma-carcinoma pairs, we observed no subclonal mutations in adenomas that became fixed in paired carcinomas, suggesting a 'parallel' evolution of synchronous adenoma-to-carcinoma, rather than a 'stepwise' evolution. The abundance of indel (in MSU and MSS pairs) and microsatellite instability (in MSU pairs) was noted in the later adenoma- or carcinoma-specific mutations, indicating that the mutational processes and functional constraints operative in early and late colorectal carcinogenesis are different. All MSU cases exhibited clonal, truncating mutations in ACVR2A, TGFBR2, and DNA mismatch repair genes, but none were present in APC or KRAS. In three MSS pairs, both APC and KRAS mutations were identified as both early and clonal events, often accompanying clonal copy number changes. An MSS case uniquely exhibited clonal ERBB2 amplification, followed by APC and TP53 mutations as carcinoma-specific events. Along with the previously unrecognized clonal origins of synchronous colorectal adenoma-carcinoma pairs, our study revealed that the preferred sequence of mutational events during colorectal carcinogenesis can be context-dependent.


High glucose-induced changes in hyaloid-retinal vessels during early ocular development of zebrafish: a short-term animal model of diabetic retinopathy.

  • Seung-Hyun Jung‎ et al.
  • British journal of pharmacology‎
  • 2016‎

Although a variety of animal models have been used to test drug candidates and examine the pathogenesis of diabetic retinopathy, time-saving and inexpensive models are still needed to evaluate the increasing number of therapeutic approaches.


The genome of common long-arm octopus Octopus minor.

  • Bo-Mi Kim‎ et al.
  • GigaScience‎
  • 2018‎

The common long-arm octopus (Octopus minor) is found in mudflats of subtidal zones and faces numerous environmental challenges. The ability to adapt its morphology and behavioral repertoire to diverse environmental conditions makes the species a promising model for understanding genomic adaptation and evolution in cephalopods.


The mechanistic insight of a specific interaction between 15d-Prostaglandin-J2 and eIF4A suggests an evolutionary conserved role across species.

  • So Jeong Yun‎ et al.
  • Biology open‎
  • 2018‎

15-deoxy-delta 12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory/anti-neoplastic prostaglandin that functions through covalent binding to cysteine residues of various target proteins. We previously showed that 15d-PGJ2 mediated anti-inflammatory responses are dependent on the translational inhibition through its interaction with eIF4A (Kim et al., 2007). Binding of 15d-PGJ2 to eIF4A specifically blocks the interaction between eIF4G and eIF4A, which leads to the formation of stress granules (SGs), which then cluster mRNAs with inhibited translation. Here, we show that the binding between 15d-PGJ2 and eIF4A specifically blocks the interaction between the MIF4G domain of eIF4G and eIF4A. To reveal the mechanism of this interaction, we used computational simulation-based docking studies and identified that the carboxyl tail of 15d-PGJ2 could stabilize the binding of 15d-PGJ2 to eIF4A through arginine 295 of eIF4A, which is the first suggestion that the 15d-PGJ2 tail plays a physiological role. Interestingly, the putative 15d-PGJ2 binding site on eiF4A is conserved across many species, suggesting a biological role. Our data propose that studying 15d-PGJ2 and its targets may uncover new therapeutic approaches in anti-inflammatory drug discovery.


Overexpression of TFF3 is involved in prostate carcinogenesis via blocking mitochondria-mediated apoptosis.

  • Jieying Liu‎ et al.
  • Experimental & molecular medicine‎
  • 2018‎

The overexpression of trefoil factor family 3 (TFF3) is observed in a variety of cancers, including prostate cancer (PCa), and its potential role in carcinogenesis, such as activating the PI3K/AKT pathway, is suggested. However, its role and its related mechanisms in prostate tumorigenesis remain unknown. To elucidate the role of TFF3 overexpression in PCa, we silenced TFF3 in two PCa cell lines that overexpressed TFF3 and explored the molecular mechanism behind its antiapoptotic role. We also examined TFF3 expression in 108 Korean PCa specimens and 106 normal prostate tissues by immunohistochemistry (IHC) analysis. The mean TFF3 IHC score in the tumor tissues was significantly higher than that in the normal tissues (4.702 vs. 0.311, P = 2.52 × 10-24). TFF3-silenced cells showed suppressed tumor cell growth and migration. TFF3 silencing decreased BCL2 and increased BAX expression. The translocation of BAX to the mitochondria was also confirmed. After TFF3 silencing, the expression of the mitochondrial proapoptotic proteins, cytochrome C and Smac/DIABLO, was elevated, and these proteins were released from the mitochondria to the cytosol. Downstream mediators of mitochondrial apoptosis, including cleaved caspase-3, caspase-9, and PARP, were also elevated. Accordingly, the proportion of apoptotic cells was significantly higher among TFF3-silenced cells. There was no difference in extrinsic apoptosis-related molecules after TFF3 silencing. All the results support that TFF3 silencing induces the downstream signaling pathway of mitochondria-mediated apoptosis. This study provides a better understanding of the mechanism of prostate tumorigenesis, suggesting TFF3 as a potential biomarker and therapeutic target of PCa.


Duplex dPCR System for Rapid Identification of Gram-Negative Pathogens in the Blood of Patients with Bloodstream Infection: A Culture-Independent Approach.

  • Juyoun Shin‎ et al.
  • Journal of microbiology and biotechnology‎
  • 2021‎

Early and accurate detection of pathogens is important to improve clinical outcomes of bloodstream infections (BSI), especially in the case of drug-resistant pathogens. In this study, we aimed to develop a culture-independent digital PCR (dPCR) system for multiplex detection of major sepsiscausing gram-negative pathogens and antimicrobial resistance genes using plasma DNA from BSI patients. Our duplex dPCR system successfully detected nine targets (five bacteria-specific targets and four antimicrobial resistance genes) through five reactions within 3 hours. The minimum detection limit was 50 ag of bacterial DNA, suggesting that 1 CFU/ml of bacteria in the blood can be detected. To validate the clinical applicability, cell-free DNA samples from febrile patients were tested with our system and confirmed high consistency with conventional blood culture. This system can support early identification of some drug-resistant gram-negative pathogens, which can help improving treatment outcomes of BSI.


Anti-stress Effect of Octopus Cephalotocin in Rats.

  • Ye-Ji Kim‎ et al.
  • Experimental neurobiology‎
  • 2022‎

Cephalotocin is a bioactivity-regulating peptide expressed in octopus (Octopus vulgaris). The peptide sequence of cephalotocin is very similar to the peptide sequence of mammalian vasopressin, and cephalotocin has been proposed to mainly activate arginine vasopressin 1b receptor (Avpr1b) in the brain. However, the effects of cephalotocin on mammalian behavior have not been studied. In the current study, cephalotocin significantly reduced both the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from not only cultured neuronal cells from postnatal Sprague-Dawley (SD) rats but also hippocampal slices from 4-week-old male C57BL/6 mice. Intraperitoneal (IP) injection did not affect the open field behaviors of C57BL/6 mice. Cephalotocin was directly infused into the hippocampus because the normalized Avpr1b staining intensity divided by the DAPI staining intensity indicated that Avpr1b expression tended to be high in the hippocampus. A hippocampal infusion of 1 mg/kg cephalotocin via an implanted cannula exerted an anti-stress effect, significantly reducing the immobility time in the tail suspension test (TST). The present results provide evidence that the effects of cephalotocin on the activity of hippocampal neurons are related to ameliorating stress, suggesting that cephalotocin may be developed as an anti-stress biomodulator that functions by affecting the brain.


Chromosome-level genome assembly of the shuttles hoppfish, Periophthalmus modestus.

  • Youngik Yang‎ et al.
  • GigaScience‎
  • 2022‎

The shuttles hoppfish (mudskipper), Periophthalmus modestus, is one of the mudskippers, which are the largest group of amphibious teleost fishes, which are uniquely adapted to live on mudflats. Because mudskippers can survive on land for extended periods by breathing through their skin and through the lining of the mouth and throat, they were evaluated as a model for the evolutionary sea-land transition of Devonian protoamphibians, ancestors of all present tetrapods.


Single-cell analysis of multiple myelomas refines the molecular features of bortezomib treatment responsiveness.

  • Seung-Hyun Jung‎ et al.
  • Experimental & molecular medicine‎
  • 2022‎

Both the tumor and tumor microenvironment (TME) are crucial for pathogenesis and chemotherapy resistance in multiple myeloma (MM). Bortezomib, commonly used for MM treatment, works on both MM and TME cells, but innate and acquired resistance easily develop. By single-cell RNA sequencing (scRNA-seq), we investigated bone marrow aspirates of 18 treatment-naïve MM patients who later received bortezomib-based treatments. Twelve plasma and TME cell types and their subsets were identified. Suboptimal responders (SORs) to bortezomib exhibited higher copy number alteration burdens than optimal responders (ORs). Forty-four differentially expressed genes for SORs based on scRNA-seq data were further analyzed in an independent cohort of 90 treatment-naïve MMs, where 24 genes were validated. A combined model of three clinical variables (older age, low absolute lymphocyte count, and no autologous stem cell transplantation) and 24 genes was associated with bortezomib responsiveness and poor prognosis. In T cells, cytotoxic memory, proliferating, and dysfunctional subsets were significantly enriched in SORs. Moreover, we identified three monocyte subsets associated with bortezomib responsiveness and an MM-specific NK cell trajectory that ended with an MM-specific subset. scRNA-seq predicted the interaction of the GAS6-MERTK, ALCAM-CD6, and BAG6-NCR gene networks. Of note, tumor cells from ORs and SORs were the most prominent sources of ALCAM on effector T cells and BAG6 on NK cells, respectively. Our results indicate that the complicated compositional and molecular changes of both tumor and immune cells in the bone marrow (BM) milieu are important in the development and acquisition of resistance to bortezomib-based treatment of MM.


Monitoring the Outcomes of Systemic Chemotherapy Including Immune Checkpoint Inhibitor for HER2-Positive Metastatic Gastric Cancer by Liquid Biopsy.

  • Seung-Hyun Jung‎ et al.
  • Yonsei medical journal‎
  • 2023‎

For precision medicine, exploration and monitoring of molecular biomarkers are essential. However, in advanced gastric cancer (GC) with visceral lesions, an invasive procedure cannot be performed repeatedly for the follow-up of molecular biomarkers.


Spatial architectures of somatic mutations in normal prostate, benign prostatic hyperplasia and coexisting prostate cancer.

  • Jeesoo Chae‎ et al.
  • Experimental & molecular medicine‎
  • 2024‎

This study aimed to identify somatic mutations in nontumor cells (NSMs) in normal prostate and benign prostatic hyperplasia (BPH) and to determine their relatedness to prostate cancer (PCA). From 22 PCA patients, two prostates were sampled for 3-dimensional mapping (50 normal, 46 BPH and 1 PCA samples), and 20 prostates were trio-sampled (two normal or BPH samples and one PCA sample) and analyzed by whole-genome sequencing. Normal and BPH tissues harbored several driver NSMs and copy number alterations (CNAs), including in FOXA1, but the variations exhibited low incidence, rare recurrence, and rare overlap with PCAs. CNAs, structural variants, and mutation signatures were similar between normal and BPH samples, while BPHs harbored a higher mutation burden, shorter telomere length, larger clone size, and more private NSMs than normal prostates. We identified peripheral-zonal dominance and right-side asymmetry in NSMs, but the asymmetry was heterogeneous between samples. In one normal prostate, private oncogenic RAS-signaling NSMs were detected, suggesting convergence in clonal maintenance. Early embryonic mutations exhibited two distinct distributions, characterized as layered and mixed patterns. Our study identified that the BPH genome differed from the normal prostate genome but was still closer to the normal genome than to the PCA genome, suggesting that BPH might be more related to aging or environmental stress than to tumorigenic processes.


Copy number variations in East-Asian population and their evolutionary and functional implications.

  • Seon-Hee Yim‎ et al.
  • Human molecular genetics‎
  • 2010‎

Recent discovery of the copy number variation (CNV) in normal individuals has widened our understanding of genomic variation. However, most of the reported CNVs have been identified in Caucasians, which may not be directly applicable to people of different ethnicities. To profile CNV in East-Asian population, we screened CNVs in 3578 healthy, unrelated Korean individuals, using the Affymetrix Genome-Wide Human SNP array 5.0. We identified 144,207 CNVs using a pooled data set of 100 randomly chosen Korean females as a reference. The average number of CNVs per genome was 40.3, which is higher than that of CNVs previously reported using lower resolution platforms. The median size of CNVs was 18.9 kb (range 0.2-5406 kb). Copy number losses were 4.7 times more frequent than copy number gains. CNV regions (CNVRs) were defined by merging overlapping CNVs identified in two or more samples. In total, 4003 CNVRs were defined encompassing 241.9 Mb accounting for approximately 8% of the human genome. A total of 2077 CNVRs (51.9%) were potentially novel. Known CNVRs were larger and more frequent than novel CNVRs. Sixteen percent of the CNVRs were observed in > or =1% of study subjects and 24% overlapped with the OMIM genes. A total of 476 (11.9%) CNVRs were associated with segmental duplications. CNVS/CNVRs identified in this study will be valuable resources for studying human genome diversity and its association with disease.


Highly pathogenic H5N6 avian influenza virus subtype clade 2.3.4.4 indigenous in South Korea.

  • Juyoun Shin‎ et al.
  • Scientific reports‎
  • 2020‎

The outbreaks of the highly pathogenic avian influenza (HPAI) in 2016-2017 and 2017-2018, caused by novel reassortant clade 2.3.4.4 H5N6 viruses, resulted in the loss of one billion birds in South Korea. Here, we characterized the H5N6 viruses isolated from wild birds in South Korea from December 2017 to August 2019 by next-generation sequencing. The results indicated that clade 2.3.4.4 H5N6 viruses isolated in 2017 and 2019 shared almost identical nucleotide sequences with the HPAI H5N6 viruses from 2016 in South Korea. This repeated detection of evolutionarily identical H5N6 viruses in same region for more than three years may suggest indigenization of the HPAI H5N6 virus in South Korea. Phylogenetic analysis demonstrated that the clade 2.3.4.4 H5N6 viruses isolated in 2017 and 2019 were evolutionarily distinct from those isolated in 2018. Molecular analysis revealed that the H5N6 viruses isolated in 2017 and 2019 had features associated with an increased risk of human infection (e.g. a deletion at position 133 of HA and glutamic acid residue at position 92 of NS1). Overall, these genomic features of HPAI H5N6 viruses highlight the need for continuous monitoring of avian influenza viruses in wild migratory birds as well as in domestic birds.


Lack of correlation between S1 RNA binding domain 1 SNP rs3213787/rs11884064 and normal-tension glaucoma in a population from the Republic of Korea.

  • Seung-Hyun Jung‎ et al.
  • Medicine‎
  • 2020‎

Previous studies have reported the association of the S1 RNA binding domain 1 (SRBD1) gene with open-angle glaucoma in various ethnic populations. However, in those studies, the definition of the patients differed, as did the results. Therefore, the relevance of the SRBD1 gene to normal tension glaucoma (NTG) appears uncertain at present. Thus, we investigated the relationship between the SRBD1 gene and NTG in a Korean NTG cohort.In total, 159 unrelated Korean patients with NTG and 103 Korean control subjects were recruited. Thus, a total of 262 participants were analyzed for SRBD1 (rs3213787 and rs11884064) gene polymorphisms.The minor allele frequency of rs3213787 was found to be 0.13 and 0.19 in NTG cases and controls, respectively. The genetic association analysis of SNP rs3213787 revealed no significant difference in genotype distribution between NTG cases and controls in allelic (odds ratio [OR] = 0.634, P = .063), dominant (OR = 0.589, P = .066) or recessive models (OR = 0.639, P = .7716). The minor allele frequency of rs11884064 was found to be 0.24 and 0.25 in NTG cases and controls, respectively. For rs11884064, no significant difference in genotype distribution was observed between NTG cases and controls in allelic (OR = 0.938, P = .755), dominant (OR = 0.927, P = .798) or recessive models (OR = 0.920, P = 1.000).The current study suggested that SRBD1 gene polymorphisms (rs3213787 and rs11884064) may not be associated with genetic susceptibility to NTG in a Korean cohort.


Anti-Melanogenesis Activity of 6-O-Isobutyrylbritannilactone from Inula britannica on B16F10 Melanocytes and In Vivo Zebrafish Models.

  • Dae Kil Jang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

A potential natural melanogenesis inhibitor was discovered in the form of a sesquiterpene isolated from the flowers of Inula britannica, specifically 6-O-isobutyrylbritannilactone (IBL). We evaluated the antimelanogenesis effects of IBL on B16F10 melanocytes and zebrafish embryos. As a result, we found that 3-isobutyl-1-methylxanthine (IBMX)-induced melanin production was reduced in a dose-dependent manner in B16F10 cells by IBL. We also analyzed B16F10 cells that were and were not treated with IBMX, investigating the melanin concentration, tyrosinase activity, mRNA levels. We also studied the protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related proteins (TRP1, and TRP2). Furthermore, we found that melanin synthesis and tyrosinase expression were also inhibited by IBL through the modulation of the following signaling pathways: ERK, phosphoinositide 3-kinase (PI3K)/AKT, and CREB. In addition, we studied antimelanogenic activity using zebrafish embryos and found that the embryos had significantly reduced pigmentation in the IBL-treated specimens compared to the untreated controls.


Urinary exosome microRNA signatures as a noninvasive prognostic biomarker for prostate cancer.

  • Sun Shin‎ et al.
  • NPJ genomic medicine‎
  • 2021‎

Predicting the risk of metastasis before starting prostate cancer (PCa) treatment can minimize the overtreatment of indolent cases and help choosing appropriate treatment. The levels of circulating microRNAs (miRNAs) from body fluids can be used as noninvasive prognostic biomarkers. In this study, urinary exosomal miRNA expression profiles of 149 PCas were determined and the miRNAs associated with metastasis were identified: miR-21, miR-16, miR-142-3p, miR-451, and miR-636. When evaluating clinical factors together, miR-21, miR-451, miR-636, and preoperative prostate-specific antigen (PSA) level remained significant in the multivariate analysis. Based on them, we developed a "Prostate Cancer Metastasis Risk Scoring (PCa-MRS)" model. The PCa-MRS showed superior stratification power (AUC = 0.925) to preoperative PSA or clinical Gleason score. Patients with high scores showed significantly poorer biochemical recurrence-free survival than those with low scores (P = 6.53 × 10-10). Our results showed the potential of urinary exosomal miRNAs as noninvasive markers for predicting metastasis and prognosis in PCa patients.


Effect of Copper Chelators via the TGF-β Signaling Pathway on Glioblastoma Cell Invasion.

  • Heabin Kim‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Glioblastoma multiforme (GBM) is a fast-growing and aggressive type of brain cancer. Unlike normal brain cells, GBM cells exhibit epithelial-mesenchymal transition (EMT), which is a crucial biological process in embryonic development and cell metastasis, and are highly invasive. Copper reportedly plays a critical role in the progression of a variety of cancers, including brain, breast, and lung cancers. However, excessive copper is toxic to cells. D-penicillamine (DPA) and triethylenetetramine (TETA) are well-known copper chelators and are the mainstay of treatment for copper-associated diseases. Following treatment with copper sulfate and DPA, GBM cells showed inhibition of proliferation and suppression of EMT properties, including reduced expression levels of N-cadherin, E-cadherin, and Zeb, which are cell markers associated with EMT. In contrast, treatment with copper sulfate and TETA yielded the opposite effects in GBM. Genes, including TGF-β, are associated with an increase in copper levels, implying their role in EMT. To analyze the invasion and spread of GBM, we used zebrafish embryos xenografted with the GBM cell line U87. The invasion of GBM cells into zebrafish embryos was markedly inhibited by copper treatment with DPA. Our findings suggest that treatment with copper and DPA inhibits proliferation and EMT through a mechanism involving TGF-β/Smad signaling in GBM. Therefore, DPA, but not TETA, could be used as adjuvant therapy for GBM with high copper concentrations.


Clinical implications of copy number alteration detection using panel-based next-generation sequencing data in myelodysplastic syndrome.

  • Yoo-Jin Kim‎ et al.
  • Leukemia research‎
  • 2021‎

Recent advancements in next-generation sequencing (NGS) technologies allow the simultaneous identification of targeted copy number alterations (CNAs) as well as somatic mutations using the same panel-based NGS data. We investigated whether CNAs detected by the targeted NGS data provided additional clinical implications, over somatic mutations, in myelodysplastic syndrome (MDS). Targeted deep sequencing of 28 well-known MDS-related genes was performed for 266 patients with MDS. Overall, 215 (80.8 %) patients were found to have at least one somatic mutation; 67 (25.2 %) had at least one CNA; 227 (85.3 %) had either a somatic mutation or CNA; and 12 had CNA without somatic mutations. Considering the clinical variables and somatic mutations alone, multivariate analysis demonstrated that sex, revised International Prognostic Scoring System (IPSS-R), and NRAS and TP53 mutations were independent prognostic factors for overall survival. For AML-free survival, these factors were sex, IPSS-R, and mutations in NRAS, DNMT3A, and complex karyotype/TP53 mutations. When we consider clinical variables along with somatic mutations and CNAs, genetic alterations in TET2, LAMB4, U2AF1, and CBL showed additional significant impact on the survivals. In conclusion, our study suggests that the concurrent detection of somatic mutations and targeted CNAs may provide clinically useful information for the prognosis of MDS patients.


Comparison of the Genetic Alterations between Primary Colorectal Cancers and Their Corresponding Patient-Derived Xenograft Tissues.

  • Sang Mi Yu‎ et al.
  • Genomics & informatics‎
  • 2018‎

Patient-derived xenograft (PDX) models are useful tools for tumor biology research and testing the efficacy of candidate anticancer drugs targeting the druggable mutations identified in tumor tissue. However, it is still unknown how much of the genetic alterations identified in primary tumors are consistently detected in tumor tissues in the PDX model. In this study, we analyzed the genetic alterations of three primary colorectal cancers (CRCs) and matched xenograft tissues in PDX models using a next-generation sequencing cancer panel. Of the 17 somatic mutations identified from the three CRCs, 14 (82.4%) were consistently identified in both primary and xenograft tumors. The other three mutations identified in the primary tumor were not detected in the xenograft tumor tissue. There was no newly identified mutation in the xenograft tumor tissues. In addition to the somatic mutations, the copy number alteration profiles were also largely consistent between the primary tumor and xenograft tissue. All of these data suggest that the PDX tumor model preserves the majority of the key mutations detected in the primary tumor site. This study provides evidence that the PDX model is useful for testing targeted therapies in the clinical field and research on precision medicine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: