Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Human pluripotent stem cell-derived alveolar epithelial cells are alternatives for in vitro pulmotoxicity assessment.

  • Hye-Ryeon Heo‎ et al.
  • Scientific reports‎
  • 2019‎

Human pluripotent stem cell (hPSC)-derived alveolar epithelial cells (AECs) provide new opportunities for understanding lung development and the treatment of pulmonary diseases. However, toxicity assessments using hPSC-AECs have not been undertaken. In this study, we generated functional AECs from hPSCs and evaluated their inflammatory and apoptotic responses to cadmium (Cd) exposure (1, 5, and 10 μM) for 24 h compared with the human bronchial epithelial cell line (BEAS-2B) and primary AECs as controls. Our data showed that Cd (10 μM) treatment induced substantial inflammatory responses and apoptosis in BEAS-2B cells, but not in both hPSC-AECs and primary AECs. Interestingly, conditioned medium from AEC cultures significantly alleviated apoptotic and inflammatory responses to Cd exposure in BEAS-2B cells. Using cytokine arrays, several potential factors secreted from hPSC-AECs and primary AECs were detected and may be involved in reducing Cd-induced cytotoxicity. We also observed higher expression of surfactant proteins B and C in both hPSC-AECs and primary AECs, which may contribute to protection against Cd-induced cytotoxicity. These results suggested that hPSC-AECs phenotypically and functionally resemble primary AECs and could be more biologically relevant alternatives for evaluating the pathological contribution of confirmed or potential pulmotoxic materials included in smoking and microdust.


Cadmium-induced ER stress and inflammation are mediated through C/EBP-DDIT3 signaling in human bronchial epithelial cells.

  • Jeeyoung Kim‎ et al.
  • Experimental & molecular medicine‎
  • 2017‎

Cadmium (Cd), a major component of cigarette smoke, disrupts the normal functions of airway cells and can lead to the development of various pulmonary diseases such as chronic obstructive pulmonary disease (COPD). However, the molecular mechanisms involved in Cd-induced pulmonary diseases are poorly understood. Here, we identified a cluster of genes that are altered in response to Cd exposure in human bronchial epithelial cells (BEAS-2B) and demonstrated that Cd-induced ER stress and inflammation are mediated via CCAAT-enhancer-binding proteins (C/EBP)-DNA-damaged-inducible transcript 3 (DDIT3) signaling in BEAS-2B cells. Cd treatment led to marked upregulation and downregulation of genes associated with the cell cycle, apoptosis, oxidative stress and inflammation as well as various signal transduction pathways. Gene set enrichment analysis revealed that Cd treatment stimulated the C/EBP signaling pathway and induced transcriptional activation of its downstream target genes, including DDIT3. Suppression of DDIT3 expression using specific small interfering RNA effectively alleviated Cd-induced ER stress and inflammatory responses in both BEAS-2B and normal primary normal human bronchial epithelial cells. Taken together, these data suggest that C/EBP signaling may have a pivotal role in the early induction of ER stress and inflammatory responses by Cd exposure and could be a molecular target for Cd-induced pulmonary disease.


Diesel Particulate Matter 2.5 Induces Epithelial-to-Mesenchymal Transition and Upregulation of SARS-CoV-2 Receptor during Human Pluripotent Stem Cell-Derived Alveolar Organoid Development.

  • Jung-Hyun Kim‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Growing evidence links prenatal exposure to particulate matter (PM2.5) with reduced lung function and incidence of pulmonary diseases in infancy and childhood. However, the underlying biological mechanisms of how prenatal PM2.5 exposure affects the lungs are incompletely understood, which explains the lack of an ideal in vitro lung development model. Human pluripotent stem cells (hPSCs) have been successfully employed for in vitro developmental toxicity evaluations due to their unique ability to differentiate into any type of cell in the body. In this study, we investigated the developmental toxicity of diesel fine PM (dPM2.5) exposure during hPSC-derived alveolar epithelial cell (AEC) differentiation and three-dimensional (3D) multicellular alveolar organoid (AO) development. We found that dPM2.5 (50 and 100 μg/mL) treatment disturbed the AEC differentiation, accompanied by upregulation of nicotinamide adenine dinucleotide phosphate oxidases and inflammation. Exposure to dPM2.5 also promoted epithelial-to-mesenchymal transition during AEC and AO development via activation of extracellular signal-regulated kinase signaling, while dPM2.5 had no effect on surfactant protein C expression in hPSC-derived AECs. Notably, we provided evidence, for the first time, that angiotensin-converting enzyme 2, a receptor to mediate the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) entry into target cells, and the cofactor transmembrane protease serine 2 were significantly upregulated in both hPSC-AECs and AOs treated with dPM2.5. In conclusion, we demonstrated the potential alveolar development toxicity and the increase of SARS-Cov-2 susceptibility of PM2.5. Our findings suggest that an hPSC-based 2D and 3D alveolar induction system could be a useful in vitro platform for evaluating the adverse effects of environmental toxins and for virus research.


WKYMVm ameliorates acute lung injury via neutrophil antimicrobial peptide derived STAT1/IRF1 pathway.

  • Hanbyeol Lee‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Formyl peptide receptors (FPRs) are mainly expressed on leucocytes and sense microbe-associated molecular pattern (MAMP) molecules, thereby regulating leukocyte chemotaxis and activation. The formyl peptide receptor 2 (FPR2) selective agonist WKYMVm (Trp-Lys-Met-Val-D-Met) has shown potent pro-angiogenic, anti-inflammatory, and anti-apoptotic properties. In this study, we investigated whether WKYMVm exhibits bactericidal activity during neutrophil accumulation in acute lung injury (ALI) in mice and determined its cellular signaling pathways in HL-60 neutrophil-like cells. A daily intraperitoneal treatment of ALI mice with WKYMVm (2.5- and 5 mg/kg/d) daily over four days decreased the levels of proinflammatory cytokines TNF-α, IL-6, and IL-1β, while it increased the MPO and NO release by differentiated HL-60 neutrophil-like cells. The IRF1 level and STAT1 phosphorylation at S727 were increased in the lungs of mice with ALI treated with WKYMVm. Lung histology induced by ALI was unaffected by treatment with WKYMVm. In vitro, WKYMVm increased MPO, NO, and SOD activity, as well as IRF1 and STAT1 phosphorylation at Ser727. Taken together, our data suggest therapeutic potential of WKYMVm, via FPR2-dependent regulation of STAT1/IRF1, in ALI.


Reduced receptor for advanced glycation end products is associated with α-SMA expression in patients with idiopathic pulmonary fibrosis and mice.

  • Hyosin Baek‎ et al.
  • Laboratory animal research‎
  • 2021‎

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. Despite alveolar epithelial cells is crucial role in lung, its contribution and the associated biomarker remain unknown in the pathogenesis of IPF. Recently, environmental factors including stone dust, silica and cigarette smoking were found as risk factors involved in IPF. Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin super family of cell surface receptors. It has been shown that interaction between RAGE and its ligands on immune cells mediates cellular migration and regulation of pro-inflammation. RAGE is highly expressed in the lung, in particular, alveolar epithelial cells. Therefore, we determined whether RAGE expression is associated with fibrosis-associated genes in patients with IPF and mice.


Growth arrest and forced differentiation of human primary glioblastoma multiforme by a novel small molecule.

  • Tae-Wook Kang‎ et al.
  • Scientific reports‎
  • 2014‎

Glioblastoma multiforme is the most common malignant brain tumor in adults, with an average survival of less than one year due to its resistance to therapy. Recent studies reported that GBM initiates from CD133-expressing cancer stem cells (CSC). However, the efficacy of CSC targeting is limited. A newly developed approach in cancer treatment is the forced differentiation of cancer cells. Here, we show that the treatment of the novel small molecule, CG500354, into CD133-expressing human primary GBM cells induces growth arrest by cell cycle regulators, p53, p21, p27 and phase-specific cyclins, and neural differentiation, as confirmed by neural progenitor/precursor markers, nestin, GFAP and Tuj1. When GBM-derived cells caused the tumors in NOD/SCID mice, CG500354 induced GBM-derived cells differentiation into Tuj1 and GFAP expressing cells. We next demonstrated that CG500354 plays a tumor-suppressive role via cAMP/CREB signaling pathway. CG500354 increases not only the extracellular cAMP level but also the protein level of PKA and CREB. Additionally, both mimetic substances, Forskolin and Rolipram, revealed comparable results with CG500354. Our findings indicate that induction of growth arrest and neural differentiation via cAMP/CREB signaling pathway by CG500354 treatment suggests the novel targeting of PDE4D in the development of new drugs for brain tumor therapy.


Anti-proliferative Effect of a Novel Anti-oxidative Peptide in Hanwoo Beef on Human Colorectal Carcinoma Cells.

  • Hye-Jin Kim‎ et al.
  • Korean journal for food science of animal resources‎
  • 2018‎

The present study aimed to characterise anti-oxidant peptides from water-soluble protein extracts of Hanwoo beef and evaluate their anti-proliferative effect on human colorectal carcinoma cells (HCT116). Antioxidant peptides were purified from the low-molecular-weight fraction (<3 kDa) of Hanwoo beef extract. Antioxidant activity of peptide fractions was determined using the oxygen radical absorbance capacity (ORAC) assay. Purified peptide (P3) displayed higher ORAC activity than the low-molecular-weight fraction (202.66 μM TE/g vs 167.38 μM TE/g of dry matter, respectively) (p<0.05). The peptide sequence of P3 was Cys-Cys-Cys-Cys-Ser-Val-Gln-Lys (888.30 Da). The novel peptide P3, at 250 μg/mL, also significantly inhibited HCT116 cell proliferation up to 25.24% through phosphorylation of ERK, JNK, and p38 kinase (p<0.05). Hence, antioxidant peptide P3 from Hanwoo beef extract can be used as an antioxidative and anti-cancer agent in the functional food industry.


Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells.

  • Aruna Kode‎ et al.
  • Respiratory research‎
  • 2006‎

Cigarette smoke mediated oxidative stress and inflammatory events in the airway and alveolar epithelium are important processes in the pathogenesis of smoking related pulmonary diseases. Previously, individual cell lines were used to assess the oxidative and proinflammatory effects of cigarette smoke with confounding results. In this study, a panel of human and rodent transformed epithelial cell lines were used to determine the effects of cigarette smoke extract (CSE) on oxidative stress markers, cell toxicity and proinflammatory cytokine release and compared the effects with that of primary human small airway epithelial cells (SAEC).


Perivascular Stem Cells Suppress Inflammasome Activation during Inflammatory Responses in Macrophages.

  • Jeeyoung Kim‎ et al.
  • International journal of stem cells‎
  • 2019‎

Perivascular stem cells (PVCs) have been identified as precursors of mesenchymal stem cells (MSCs) that offer promising prospects for application in the development of cellular therapies. Although PVCs have been demonstrated to have greater therapeutic potential compared to bone marrow and adipose tissue-derived MSCs in various diseases, the regulatory role of PVCs on inflammasome activation during macrophage-mediated inflammatory responses has not been investigated.


Cyclic Phytosphingosine-1-Phosphate Primed Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice.

  • Youngheon Park‎ et al.
  • International journal of stem cells‎
  • 2023‎

O-cyclic phytosphingosine-1-phosphate (cP1P) is a synthetic chemical and has a structure like sphingosine-1-phosphate (S1P). S1P is known to promote cell migration, invasion, proliferation, and anti-apoptosis through hippocampal signals. However, S1P mediated cellular-, molecular mechanism is still remained in the lung. Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are characterized by excessive immune response, increased vascular permeability, alveolar-peritoneal barrier collapse, and edema. In this study, we determined whether cP1P primed human dermal derived mesenchymal stem cells (hdMSCs) ameliorate lung injury and its therapeutic pathway in ALI mice.


Inhibition of MicroRNA-221 and 222 Enhances Hematopoietic Differentiation from Human Pluripotent Stem Cells via c-KIT Upregulation.

  • Ji Yoon Lee‎ et al.
  • Molecules and cells‎
  • 2018‎

The stem cell factor (SCF)/c-KIT axis plays an important role in the hematopoietic differentiation of human pluripotent stem cells (hPSCs), but its regulatory mechanisms involving microRNAs (miRs) are not fully elucidated. Here, we demonstrated that supplementation with SCF increases the hematopoietic differentiation of hPSCs via the interaction with its receptor tyrosine kinase c-KIT, which is modulated by miR-221 and miR-222. c-KIT is comparably expressed in undifferentiated human embryonic and induced pluripotent stem cells. The inhibition of SCF signaling via treatment with a c-KIT antagonist (imatinib) during hPSC-derived hematopoiesis resulted in reductions in the yield and multi-lineage potential of hematopoietic progenitors. We found that the transcript levels of miR-221 and miR-222 targeting c-KIT were significantly lower in the pluripotent state than they were in terminally differentiated somatic cells. Furthermore, suppression of miR-221 and miR-222 in undifferentiated hPSC cultures induced more hematopoiesis by increasing c-KIT expression. Collectively, our data implied that the modulation of c-KIT by miRs may provide further potential strategies to expedite the generation of functional blood cells for therapeutic approaches and the study of the cellular machinery related to hematologic malignant diseases such as leukemia.


Reprogramming mechanisms influence the maturation of hematopoietic progenitors from human pluripotent stem cells.

  • Hye-Ryeon Heo‎ et al.
  • Cell death & disease‎
  • 2018‎

Somatic cell nuclear transfer (SCNT) or the forced expression of transcription factors can be used to generate autologous pluripotent stem cells (PSCs). Although transcriptomic and epigenomic comparisons of isogenic human NT-embryonic stem cells (NT-ESCs) and induced PSCs (iPSCs) in the undifferentiated state have been reported, their functional similarities and differentiation potentials have not been fully elucidated. Our study showed that NT-ESCs and iPSCs derived from the same donors generally displayed similar in vitro commitment capacity toward three germ layer lineages as well as proliferative activity and clonogenic capacity. However, the maturation capacity of NT-ESC-derived hematopoietic progenitors was significantly greater than the corresponding capacity of isogenic iPSC-derived progenitors. Additionally, donor-dependent variations in hematopoietic specification and commitment capacity were observed. Transcriptome and methylome analyses in undifferentiated NT-ESCs and iPSCs revealed a set of genes that may influence variations in hematopoietic commitment and maturation between PSC lines derived using different reprogramming methods. Here, we suggest that genetically identical iPSCs and NT-ESCs could be functionally unequal due to differential transcription and methylation levels acquired during reprogramming. Our proof-of-concept study indicates that reprogramming mechanisms and genetic background could contribute to diverse functionalities between PSCs.


Zinc Oxide Nanoparticles Exhibit Both Cyclooxygenase- and Lipoxygenase-Mediated Apoptosis in Human Bone Marrow-Derived Mesenchymal Stem Cells.

  • Dong-Yung Kim‎ et al.
  • Toxicological research‎
  • 2019‎

Nanoparticles (NPs) have been recognized as both useful tools and potentially toxic materials in various industrial and medicinal fields. Previously, we found that zinc oxide (ZnO) NPs that are neurotoxic to human dopaminergic neuroblastoma SH-SY5Y cells are mediated by lipoxygenase (LOX), not cyclooxygenase-2 (COX-2). Here, we examined whether human bone marrow-derived mesenchymal stem cells (MSCs), which are different from neuroblastoma cells, might exhibit COX-2- and/or LOX-dependent cytotoxicity of ZnO NPs. Additionally, changes in annexin V expression, caspase-3/7 activity, and mitochondrial membrane potential (MMP) induced by ZnO NPs and ZnO were compared at 12 hr and 24 hr after exposure using flow cytometry. Cytotoxicity was measured based on lactate dehydrogenase activity and confirmed by trypan blue staining. Rescue studies were executed using zinc or iron chelators. ZnO NPs and ZnO showed similar dose-dependent and significant cytotoxic effects at concentrations ≥ 15 μg/mL, in accordance with annexin V expression, caspase-3/7 activity, and MMP results. Human MSCs exhibited both COX-2 and LOX-mediated cytotoxicity after exposure to ZnO NPs, which was different from human neuroblastoma cells. Zinc and iron chelators significantly attenuated ZnO NPs-induced toxicity. Conclusively, these results suggest that ZnO NPs exhibit both COX-2- and LOX-mediated apoptosis by the participation of mitochondrial dysfunction in human MSC cultures.


Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling pathway.

  • Hye-Ryun Kim‎ et al.
  • Cell & bioscience‎
  • 2016‎

Aside from its importance in reproduction, estrogen (E2) is known to regulate the proliferation and differentiation of hematopoietic stem cells in rodents. However, the regulatory role of E2 in human hematopoietic system has not been investigated. The purpose of this study is to investigate the effect of E2 on hematopoietic differentiation using human pluripotent stem cells (hPSCs).


Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells.

  • Eunbi Kim‎ et al.
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology‎
  • 2017‎

Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer.


The regulatory role of c-MYC on HDAC2 and PcG expression in human multipotent stem cells.

  • Dilli Ram Bhandari‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2011‎

Myelocytomatosis oncogene (c-MYC) is a well-known nuclear oncoprotein having multiple functions in cell proliferation, apoptosis and cellular transformation. Chromosomal modification is also important to the differentiation and growth of stem cells. Histone deacethylase (HDAC) and polycomb group (PcG) family genes are well-known chromosomal modification genes. The aim of this study was to elucidate the role of c-MYC in the expression of chromosomal modification via the HDAC family genes in human mesenchymal stem cells (hMSCs). To achieve this goal, c-MYC expression was modified by gene knockdown and overexpression via lentivirus vector. Using the modified c-MYC expression, our study was focused on cell proliferation, differentiation and cell cycle. Furthermore, the relationship of c-MYC with HDAC2 and PcG genes was also examined. The cell proliferation and differentiation were checked and shown to be dramatically decreased in c-MYC knocked-down human umbilical cord blood-derived MSCs, whereas they were increased in c-MYC overexpressing cells. Similarly, RT-PCR and Western blotting results revealed that HDAC2 expression was decreased in c-MYC knocked-down and increased in c-MYC overexpressing hMSCs. Database indicates presence of c-MYC binding motif in HDAC2 promoter region, which was confirmed by chromatin immunoprecipitation assay. The influence of c-MYC and HDAC2 on PcG expression was confirmed. This might indicate the regulatory role of c-MYC over HDAC2 and PcG genes. c-MYCs' regulatory role over HDAC2 was also confirmed in human adipose tissue-derived MSCs and bone-marrow derived MSCs. From this finding, it can be concluded that c-MYC plays a vital role in cell proliferation and differentiation via chromosomal modification.


Empagliflozin dilates the rabbit aorta by activating PKG and voltage-dependent K+ channels.

  • Mi Seon Seo‎ et al.
  • Toxicology and applied pharmacology‎
  • 2020‎

We investigated the vasodilatory effects of empagliflozin (a sodium-glucose co-transporter 2 inhibitor) and the underlying mechanisms using rabbit aorta. Empagliflozin induced vasodilation in a concentration-dependent manner independently of the endothelium. Likewise, pretreatment with the nitric oxide synthase inhibitor L-NAME or the SKca inhibitor apamin together with the IKca inhibitor TRAM-34 did not impact the vasodilatory effects of empagliflozin. Pretreatment with the adenylyl cyclase inhibitor SQ22536 or a guanylyl cyclase inhibitor ODQ or a protein kinase A (PKA) inhibitor KT5720 also did not alter the vasodilatory response of empagliflozin. However, the vasodilatory effects of empagliflozin were significantly reduced by pretreatment with the protein kinase G (PKG) inhibitor KT5823. Although application of the ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline, or inwardly rectifying K+ (Kir) channel inhibitor Ba2+ did not impact the vasodilatory effects of empagliflozin, pretreatment with the voltage-dependent K+ (Kv) channel inhibitor 4-AP reduced the vasodilatory effects of empagliflozin. Pretreatment with DPO-1 (Kv1.5 channel inhibitor), guangxitoxin (Kv2.1 channel inhibitor), or linopirdine (Kv7 channel inhibitor) had little effect on empagliflozin-induced vasodilation. Application of nifedipine (L-type Ca2+ channel inhibitor) or thapsigargin (sarco-endoplasmic reticulum Ca2+-ATPase pump inhibitor) did not impact empagliflozin-induced vasodilation. Therefore, empagliflozin induces vasodilation by activating PKG and Kv channels.


Human pluripotent stem-cell-derived alveolar organoids for modeling pulmonary fibrosis and drug testing.

  • Jung-Hyun Kim‎ et al.
  • Cell death discovery‎
  • 2021‎

Detailed understanding of the pathogenesis and development of effective therapies for pulmonary fibrosis (PF) have been hampered by lack of in vitro human models that recapitulate disease pathophysiology. In this study, we generated alveolar organoids (AOs) derived from human pluripotent stem cells (hPSCs) for use as an PF model and for drug efficacy evaluation. Stepwise direct differentiation of hPSCs into alveolar epithelial cells by mimicking developmental cues in a temporally controlled manner was used to generate multicellular AOs. Derived AOs contained the expected spectrum of differentiated cells, including alveolar progenitors, type 1 and 2 alveolar epithelial cells and mesenchymal cells. Treatment with transforming growth factor (TGF-β1) induced fibrotic changes in AOs, offering a PF model for therapeutic evaluation of a structurally truncated form (NP-011) of milk fat globule-EGF factor 8 (MFG-E8) protein. The significant fibrogenic responses and collagen accumulation that were induced by treatment with TGF-β1 in these AOs were effectively ameliorated by treatment with NP-011 via suppression of extracellular signal-regulated kinase (ERK) signaling. Furthermore, administration of NP-011 reversed bleomycin-induced lung fibrosis in mice also via ERK signaling suppression and collagen reduction. This anti-fibrotic effect mirrored that following Pirfenidone and Nintedanib administration. Furthermore, NP-011 interacted with macrophages, which accelerated the collagen uptake for eliminating accumulated collagen in fibrotic lung tissues. This study provides a robust in vitro human organoid system for modeling PF and assessing anti-fibrotic mechanisms of potential drugs and suggests that modified MGF-E8 protein has therapeutic potential for treating PF.


Organoid Model in Idiopathic Pulmonary Fibrosis.

  • Jooyeon Lee‎ et al.
  • International journal of stem cells‎
  • 2021‎

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive- fibrosing disease characterized by extensive deposition of extracellular matrix (ECM), scarring of the lung parenchyma. Despite increased awareness of IPF, etiology and physiological mechanism of IPF are unclear. Therefore, preclinical model will require relevant and recapitulative features of IPF. Recently, pluripotent stem cells (PSC)-based organoid studies are emerging as an alternative approach able to recapitulate tissue architecture with remarkable fidelity. Moreover, these biomimetic tissue models can be served to investigate the mechanisms of diverse disease progression. In this review, we will overview the current organoids technology for human disease modeling including lung organoids for IPF.


Inhibition of RAGE Attenuates Cigarette Smoke-Induced Lung Epithelial Cell Damage via RAGE-Mediated Nrf2/DAMP Signaling.

  • Hanbyeol Lee‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

The oxidative stress and cellular apoptosis by environmental factor including cigarette smoke induces alveolar airway remodeling leading to chronic obstructive pulmonary disease (COPD). Recently, the receptor for advanced glycan end products (RAGE) which is highly expressed in alveolar epithelium is emerging as a biomarker for COPD susceptibility or progression. However, it still remains unknown how RAGE plays a role in cigarette smoke extract (CSE)-exposed human alveolar type II epithelial cell line. Therefore, we determined the efficacy of RAGE-specific antagonist FPS-ZM1 in response to CSE-induced lung epithelial cells. CSE induced the elevated generation of RONS and release of pro-inflammatory cytokines, and impaired the cellular antioxidant defense system. Further, CSE induced the alteration of RAGE distribution via the activation of redox-sensitive DAMP (Damage-associated molecular patterns) signaling through Nrf2 in cells. Although pre-treatment with SB202190 (p38 inhibitor) or SP600125 (JNK inhibitor) failed to recover the alteration of RAGE distribution, treatment of FPS-ZM1 significantly exhibited anti-inflammatory and anti-oxidative/nitrosative effects, also inhibited the activation of redox-sensitive DAMP signaling through Nrf2 (nuclear factor erythroid 2-related factor 2) migration in the presence of CSE. Taken together, our data demonstrate that RAGE and Nrf2 play a pivotal role in maintenance of alveolar epithelial integrity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: