Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Selective Bacterial Community Enrichment between the Pitcher Plants Sarracenia minor and Sarracenia flava.

  • Scott M Yourstone‎ et al.
  • Microbiology spectrum‎
  • 2021‎

The interconnected and overlapping habitats present in natural ecosystems remain a challenge in determining the forces driving microbial community composition. The cuplike leaf structures of some carnivorous plants, including those of the family Sarraceniaceae, are self-contained ecological habitats that represent systems for exploring such microbial ecology questions. We investigated whether Sarracenia minor and Sarracenia flava cultivate distinct bacterial communities when sampled at the same geographic location and time. This sampling strategy eliminates many abiotic environmental variables present in other studies that compare samples harvested over time, and it could reveal biotic factors driving the selection of microbes. DNA extracted from the decomposing detritus trapped in each Sarracenia leaf pitcher was profiled using 16S rRNA amplicon sequencing. We identified a surprising amount of bacterial diversity within each pitcher, but we also discovered bacteria whose abundance was specifically enriched in one of the two Sarracenia species. These differences in bacterial community representation suggest some biotic influence of the Sarracenia plant on the bacterial composition of their pitchers. Overall, our results suggest that bacterial selection due to factors other than geographic location, weather, or prey availability is occurring within the pitchers of these two closely related plant species. This indicates that specific characteristics of S. minor and S. flava may play a role in fostering distinct bacterial communities. These confined, naturally occurring microbial ecosystems within Sarracenia pitchers may provide model systems to answer important questions about the drivers of microbial community composition, succession, and response to environmental perturbations. IMPORTANCE This study uses amplicon sequencing to compare the bacterial communities of environmental samples from the detritus of the leaf cavities of Sarracenia minor and Sarracenia flava pitcher plants. We sampled the detritus at the same time and in the same geographic location, eliminating many environmental variables present in other comparative studies. This study revealed that different species of Sarracenia contain distinct bacterial members within their pitchers, suggesting that these communities are not randomly established based on environmental factors and the prey pool but are potentially enriched for by the plants' chemical or physical environment. This study of these naturally occurring, confined microbial ecosystems will help further establish carnivorous pitcher plants as a model system for answering important questions about the development and succession of microbial communities.


Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of Gossypium spp.

  • Amanda M Hulse-Kemp‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community.


Development and mapping of SNP assays in allotetraploid cotton.

  • Robert L Byers‎ et al.
  • TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik‎
  • 2012‎

A narrow germplasm base and a complex allotetraploid genome have made the discovery of single nucleotide polymorphism (SNP) markers difficult in cotton (Gossypium hirsutum). To generate sequence for SNP discovery, we conducted a genome reduction experiment (EcoRI, BafI double digest, followed by adapter ligation, biotin-streptavidin purification, and agarose gel separation) on two accessions of G. hirsutum and two accessions of G. barbadense. From the genome reduction experiment, a total of 2.04 million genomic sequence reads were assembled into contigs with an N(50) of 508 bp and analyzed for SNPs. A previously generated assembly of expressed sequence tags (ESTs) provided an additional source for SNP discovery. Using highly conservative parameters (minimum coverage of 8× at each SNP and 20% minor allele frequency), a total of 11,834 and 1,679 non-genic SNPs were identified between accessions of G. hirsutum and G. barbadense in genome reduction assemblies, respectively. An additional 4,327 genic SNPs were also identified between accessions of G. hirsutum in the EST assembly. KBioscience KASPar assays were designed for a portion of the intra-specific G. hirsutum SNPs. From 704 non-genic and 348 genic markers developed, a total of 367 (267 non-genic, 100 genic) mapped in a segregating F(2) population (Acala Maxxa × TX2094) using the Fluidigm EP1 system. A G. hirsutum genetic linkage map of 1,688 cM was constructed based entirely on these new SNP markers. Of the genic-based SNPs, we were able to identify within which genome ('A' or 'D') each SNP resided using diploid species sequence data. Genetic maps generated by these newly identified markers are being used to locate quantitative, economically important regions within the cotton genome.


MT-Toolbox: improved amplicon sequencing using molecule tags.

  • Scott M Yourstone‎ et al.
  • BMC bioinformatics‎
  • 2014‎

Short oligonucleotides can be used as markers to tag and track DNA sequences. For example, barcoding techniques (i.e. Multiplex Identifiers or Indexing) use short oligonucleotides to distinguish between reads from different DNA samples pooled for high-throughput sequencing. A similar technique called molecule tagging uses the same principles but is applied to individual DNA template molecules. Each template molecule is tagged with a unique oligonucleotide prior to polymerase chain reaction. The resulting amplicon sequences can be traced back to their original templates by their oligonucleotide tag. Consensus building from sequences sharing the same tag enables inference of original template molecules thereby reducing effects of sequencing error and polymerase chain reaction bias. Several independent groups have developed similar protocols for molecule tagging; however, user-friendly software for build consensus sequences from molecule tagged reads is not readily available or is highly specific for a particular protocol.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: