Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion.

  • Syd Johnson‎ et al.
  • Journal of molecular biology‎
  • 2010‎

Bispecific antibodies capable of redirecting the lytic potential of immune effector cells to kill tumor targets have long been recognized as a potentially potent biological therapeutic intervention. Unfortunately, efforts to produce such molecules have been limited owing to inefficient production and poor stability properties. Here, we describe a novel Fv-derived strategy based on a covalently linked bispecific diabody structure that we term dual-affinity re-targeting (DART). As a model system, we linked an Fv specific for human CD16 (FcgammaRIII) on effector cells to an Fv specific for mouse or human CD32B (FcgammaRIIB), a normal B-cell and tumor target antigen. DART proteins were produced at high levels in mammalian cells, retained the binding activity of the respective parental Fv domains as well as bispecific binding, and showed extended storage and serum stability. Functionally, the DART molecules demonstrated extremely potent, dose-dependent cytotoxicity in retargeting human PBMC against B-lymphoma cell lines as well as in mediating autologous B-cell depletion in culture. In vivo studies in mice demonstrated effective B-cell depletion that was dependent on the transgenic expression of both CD16A on the effector cells and CD32B on the B-cell targets. Furthermore, DART proteins showed potent in vivo protective activity in a human Burkitt's lymphoma cell xenograft model. Thus, DART represents a biologically potent format that provides a versatile platform for generating bispecific antibody fragments for redirected killing and, with the selection of appropriate binding partners, applications outside of tumor cell cytotoxicity.


Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protégé trial.

  • William Hagopian‎ et al.
  • Diabetes‎
  • 2013‎

Protégé was a phase 3, randomized, double-blind, parallel, placebo-controlled 2-year study of three intravenous teplizumab dosing regimens, administered daily for 14 days at baseline and again after 26 weeks, in new-onset type 1 diabetes. We sought to determine efficacy and safety of teplizumab immunotherapy at 2 years and to identify characteristics associated with therapeutic response. Of 516 randomized patients, 513 were treated, and 462 completed 2 years of follow-up. Teplizumab (14-day full-dose) reduced the loss of C-peptide mean area under the curve (AUC), a prespecified secondary end point, at 2 years versus placebo. In analyses of prespecified and post hoc subsets at entry, U.S. residents, patients with C-peptide mean AUC >0.2 nmol/L, those randomized ≤6 weeks after diagnosis, HbA1c <7.5% (58 mmol/mol), insulin use <0.4 units/kg/day, and 8-17 years of age each had greater teplizumab-associated C-peptide preservation than their counterparts. Exogenous insulin needs tended to be reduced versus placebo. Antidrug antibodies developed in some patients, without apparent change in drug efficacy. No new safety or tolerability issues were observed during year 2. In summary, anti-CD3 therapy reduced C-peptide loss 2 years after diagnosis using a tolerable dose.


Isolation of cancer stem like cells from human adenosquamous carcinoma of the lung supports a monoclonal origin from a multipotential tissue stem cell.

  • Jennie P Mather‎ et al.
  • PloS one‎
  • 2013‎

There is increasing evidence that many solid tumors are hierarchically organized with the bulk tumor cells having limited replication potential, but are sustained by a stem-like cell that perpetuates the tumor. These cancer stem cells have been hypothesized to originate from transformation of adult tissue stem cells, or through re-acquisition of stem-like properties by progenitor cells. Adenosquamous carcinoma (ASC) is an aggressive type of lung cancer that contains a mixture of cells with squamous (cytokeratin 5+) and adenocarcinoma (cytokeratin 7+) phenotypes. The origin of these mixtures is unclear as squamous carcinomas are thought to arise from basal cells in the upper respiratory tract while adenocarcinomas are believed to form from stem cells in the bronchial alveolar junction. We have isolated and characterized cancer stem-like populations from ASC through application of selective defined culture medium initially used to grow human lung stem cells. Homogeneous cells selected from ASC tumor specimens were stably expanded in vitro. Primary xenografts and metastatic lesions derived from these cells in NSG mice fully recapitulate both the adenocarcinoma and squamous features of the patient tumor. Interestingly, while the CSLC all co-expressed cytokeratins 5 and 7, most xenograft cells expressed either one, or neither, with <10% remaining double positive. We also demonstrated the potential of the CSLC to differentiate to multi-lineage structures with branching lung morphology expressing bronchial, alveolar and neuroendocrine markers in vitro. Taken together the properties of these ASC-derived CSLC suggests that ASC may arise from a primitive lung stem cell distinct from the bronchial-alveolar or basal stem cells.


Identification and characterization of angiogenesis targets through proteomic profiling of endothelial cells in human cancer tissues.

  • Mehdi Mesri‎ et al.
  • PloS one‎
  • 2013‎

Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS) as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs) from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total) tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC) including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3.


Decompression Versus Fusion for Grade I Degenerative Spondylolisthesis: A Meta-Analysis.

  • Scott Koenig‎ et al.
  • Global spine journal‎
  • 2019‎

Meta-analysis of evidence level I to IV studies.


prM-reactive antibodies reveal a role for partially mature virions in dengue virus pathogenesis.

  • Kimberly A Dowd‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Cleavage of the flavivirus premembrane (prM) structural protein during maturation can be inefficient. The contribution of partially mature flavivirus virions that retain uncleaved prM to pathogenesis during primary infection is unknown. To investigate this question, we characterized the functional properties of newly-generated dengue virus (DENV) prM-reactive monoclonal antibodies (mAbs) in vitro and using a mouse model of DENV disease. Anti-prM mAbs neutralized DENV infection in a virion maturation state-dependent manner. Alanine scanning mutagenesis and cryoelectron microscopy of anti-prM mAbs in complex with immature DENV defined two modes of attachment to a single antigenic site. In vivo, passive transfer of intact anti-prM mAbs resulted in an antibody-dependent enhancement of disease. However, protection against DENV-induced lethality was observed when the transferred mAbs were genetically modified to inhibit their ability to interact with Fcγ receptors. These data establish that in addition to mature forms of the virus, partially mature infectious prM+ virions can also contribute to pathogenesis during primary DENV infections.


Development and Preliminary Clinical Activity of PD-1-Guided CTLA-4 Blocking Bispecific DART Molecule.

  • Alexey Berezhnoy‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Combination immunotherapy with antibodies directed against PD-1 and CTLA-4 shows improved clinical benefit across cancer indications compared to single agents, albeit with increased toxicity. Leveraging the observation that PD-1 and CTLA-4 are co-expressed by tumor-infiltrating lymphocytes, an investigational PD-1 x CTLA-4 bispecific DART molecule, MGD019, is engineered to maximize checkpoint blockade in the tumor microenvironment via enhanced CTLA-4 blockade in a PD-1-binding-dependent manner. In vitro, MGD019 mediates the combinatorial blockade of PD-1 and CTLA-4, confirming dual inhibition via a single molecule. MGD019 is well tolerated in non-human primates, with evidence of both PD-1 and CTLA-4 blockade, including increases in Ki67+CD8 and ICOS+CD4 T cells, respectively. In the ongoing MGD019 first-in-human study enrolling patients with advanced solid tumors (NCT03761017), an analysis undertaken following the dose escalation phase revealed acceptable safety, pharmacodynamic evidence of combinatorial blockade, and objective responses in multiple tumor types typically unresponsive to checkpoint inhibitor therapy.


TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator.

  • Thi Sau Migone‎ et al.
  • Immunity‎
  • 2002‎

DR3 is a death domain-containing receptor that is upregulated during T cell activation and whose overexpression induces apoptosis and NF-kappaB activation in cell lines. Here we show that an endothelial cell-derived TNF-like factor, TL1A, is a ligand for DR3 and decoy receptor TR6/DcR3 and that its expression is inducible by TNF and IL-1alpha. TL1A induces NF-kappaB activation and apoptosis in DR3-expressing cell lines, while TR6-Fc protein antagonizes these signaling events. Interestingly, in T cells, TL1A acts as a costimulator that increases IL-2 responsiveness and secretion of proinflammatory cytokines both in vitro and in vivo. Our data suggest that interaction of TL1A with DR3 promotes T cell expansion during an immune response, whereas TR6 has an opposing effect.


Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties.

  • Jeffrey L Nordstrom‎ et al.
  • Breast cancer research : BCR‎
  • 2011‎

Response to trastuzumab in metastatic breast cancer correlates with expression of the high binding variant (158V) of the activating Fcγ receptor IIIA (CD16A). We engineered MGAH22, a chimeric anti-HER2 monoclonal antibody with specificity and affinity similar to trastuzumab, with an Fc domain engineered for increased binding to both alleles of human CD16A.


Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair.

  • Chuntao Zhao‎ et al.
  • Developmental cell‎
  • 2018‎

Disruptive mutations in chromatin remodeler CHD8 cause autism spectrum disorders, exhibiting widespread white matter abnormalities; however, the underlying mechanisms remain elusive. We show that cell-type specific Chd8 deletion in oligodendrocyte progenitors, but not in neurons, results in myelination defects, revealing a cell-intrinsic dependence on CHD8 for oligodendrocyte lineage development, myelination and post-injury remyelination. CHD8 activates expression of BRG1-associated SWI/SNF complexes that in turn activate CHD7, thus initiating a successive chromatin remodeling cascade that orchestrates oligodendrocyte lineage progression. Genomic occupancy analyses reveal that CHD8 establishes an accessible chromatin landscape, and recruits MLL/KMT2 histone methyltransferase complexes distinctively around proximal promoters to promote oligodendrocyte differentiation. Inhibition of histone demethylase activity partially rescues myelination defects of CHD8-deficient mutants. Our data indicate that CHD8 exhibits a dual function through inducing a cascade of chromatin reprogramming and recruiting H3K4 histone methyltransferases to establish oligodendrocyte identity, suggesting potential strategies of therapeutic intervention for CHD8-associated white matter defects.


Can Liposomal Bupivacaine Be Safely Utilized in Elective Spine Surgery?

  • Luke Brown‎ et al.
  • Global spine journal‎
  • 2019‎

Single-blinded prospective randomized control trial.


Analgesics for the management of acute dental pain in the pediatric population: A systematic review and meta-analysis.

  • Anna Miroshnychenko‎ et al.
  • Journal of the American Dental Association (1939)‎
  • 2023‎

The authors assessed the clinical effectiveness of analgesics to manage acute pain after dental extractions and pain associated with irreversible pulpitis in children.


Injectable and topical local anesthetics for acute dental pain: 2 systematic reviews.

  • Anna Miroshnychenko‎ et al.
  • Journal of the American Dental Association (1939)‎
  • 2023‎

Local anesthesia is essential for pain control in dentistry. The authors assessed the comparative effect of local anesthetics on acute dental pain after tooth extraction and in patients with symptomatic irreversible pulpitis.


Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells.

  • Derek D Sloan‎ et al.
  • PLoS pathogens‎
  • 2015‎

HIV reservoirs and production of viral antigens are not eliminated in chronically infected participants treated with combination antiretroviral therapy (cART). Novel therapeutic strategies aiming at viral reservoir elimination are needed to address chronic immune dysfunction and non-AIDS morbidities that exist despite effective cART. The HIV envelope protein (Env) is emerging as a highly specific viral target for therapeutic elimination of the persistent HIV-infected reservoirs via antibody-mediated cell killing. Dual-Affinity Re-Targeting (DART) molecules exhibit a distinct mechanism of action via binding the cell surface target antigen and simultaneously engaging CD3 on cytotoxic T lymphocytes (CTLs). We designed and evaluated Env-specific DARTs (HIVxCD3 DARTs) derived from known antibodies recognizing diverse Env epitopes with or without broadly neutralizing activity. HIVxCD3 DARTs derived from PGT121, PGT145, A32, and 7B2, but not VRC01 or 10E8 antibodies, mediated potent CTL-dependent killing of quiescent primary CD4 T cells infected with diverse HIV isolates. Similar killing activity was also observed with DARTs structurally modified for in vivo half-life extension. In an ex vivo model using cells isolated from HIV-infected participants on cART, combinations of the most potent HIVxCD3 DARTs reduced HIV expression both in quiescent and activated peripheral blood mononuclear cell cultures isolated from HIV-infected participants on suppressive cART. Importantly, HIVxCD3 DARTs did not induce cell-to-cell virus spread in resting or activated CD4 T cell cultures. Collectively, these results provide support for further development of HIVxCD3 DARTs as a promising therapeutic strategy for targeting HIV reservoirs.


Development of PF-06671008, a Highly Potent Anti-P-cadherin/Anti-CD3 Bispecific DART Molecule with Extended Half-Life for the Treatment of Cancer.

  • Adam R Root‎ et al.
  • Antibodies (Basel, Switzerland)‎
  • 2016‎

Bispecific antibodies offer a promising approach for the treatment of cancer but can be challenging to engineer and manufacture. Here we report the development of PF-06671008, an extended-half-life dual-affinity re-targeting (DART®) bispecific molecule against P-cadherin and CD3 that demonstrates antibody-like properties. Using phage display, we identified anti-P-cadherin single chain Fv (scFv) that were subsequently affinity-optimized to picomolar affinity using stringent phage selection strategies, resulting in low picomolar potency in cytotoxic T lymphocyte (CTL) killing assays in the DART format. The crystal structure of this disulfide-constrained diabody shows that it forms a novel compact structure with the two antigen binding sites separated from each other by approximately 30 Å and facing approximately 90° apart. We show here that introduction of the human Fc domain in PF-06671008 has produced a molecule with an extended half-life (-4.4 days in human FcRn knock-in mice), high stability (Tm1 > 68 °C), high expression (>1 g/L), and robust purification properties (highly pure heterodimer), all with minimal impact on potency. Finally, we demonstrate in vivo anti-tumor efficacy in a human colorectal/human peripheral blood mononuclear cell (PBMC) co-mix xenograft mouse model. These results suggest PF-06671008 is a promising new bispecific for the treatment of patients with solid tumors expressing P-cadherin.


Dual checkpoint targeting of B7-H3 and PD-1 with enoblituzumab and pembrolizumab in advanced solid tumors: interim results from a multicenter phase I/II trial.

  • Charu Aggarwal‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

Availability of checkpoint inhibitors has created a paradigm shift in the management of patients with solid tumors. Despite this, most patients do not respond to immunotherapy, and there is considerable interest in developing combination therapies to improve response rates and outcomes. B7-H3 (CD276) is a member of the B7 family of cell surface molecules and provides an alternative immune checkpoint molecule to therapeutically target alone or in combination with programmed cell death-1 (PD-1)-targeted therapies. Enoblituzumab, an investigational anti-B7-H3 humanized monoclonal antibody, incorporates an immunoglobulin G1 fragment crystallizable (Fc) domain that enhances Fcγ receptor-mediated antibody-dependent cellular cytotoxicity. Coordinated engagement of innate and adaptive immunity by targeting distinct members of the B7 family (B7-H3 and PD-1) is hypothesized to provide greater antitumor activity than either agent alone.


A humanized CD3ε-knock-in mouse model for pre-clinical testing of anti-human CD3 therapy.

  • Joel Crespo‎ et al.
  • PloS one‎
  • 2021‎

Pre-clinical murine models are critical for translating drug candidates from the bench to the bedside. There is interest in better understanding how anti-human CD3 therapy works based on recent longitudinal studies of short-term administration. Although several models have been created in this pursuit, each have their own advantages and disadvantages in Type-1 diabetes. In this study, we report a murine genetic knock-in model which expresses both a murine and a humanized-CD3ε-exon, rendering it sensitive to manipulation with anti-human CD3. These huCD3εHET mice are viable and display no gross abnormalities. Specifically, thymocyte development and T cell peripheral homeostasis is unaffected. We tested immune functionality of these mice by immunizing them with T cell-dependent antigens and no differences in antibody titers compared to wild type mice were recorded. Finally, we performed a graft-vs-host disease model that is driven by effector T cell responses and observed a wasting disease upon transfer of huCD3εHET T cells. Our results show a viable humanized CD3 murine model that develops normally, is functionally engaged by anti-human CD3 and can instruct on pre-clinical tests of anti-human CD3 antibodies.


The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial.

  • Jason J Luke‎ et al.
  • Nature medicine‎
  • 2023‎

Tebotelimab, a bispecific PD-1×LAG-3 DART molecule that blocks both PD-1 and LAG-3, was investigated for clinical safety and activity in a phase 1 dose-escalation and cohort-expansion clinical trial in patients with solid tumors or hematologic malignancies and disease progression on previous treatment. Primary endpoints were safety and maximum tolerated dose of tebotelimab when administered as a single agent (n = 269) or in combination with the anti-HER2 antibody margetuximab (n = 84). Secondary endpoints included anti-tumor activity. In patients with advanced cancer treated with tebotelimab monotherapy, 68% (184/269) experienced treatment-related adverse events (TRAEs; 22% were grade ≥3). No maximum tolerated dose was defined; the recommended phase 2 dose (RP2D) was 600 mg once every 2 weeks. There were tumor decreases in 34% (59/172) of response-evaluable patients in the dose-escalation cohorts, with objective responses in multiple solid tumor types, including PD-1-refractory disease, and in LAG-3+ non-Hodgkin lymphomas, including CAR-T refractory disease. To enhance potential anti-tumor responses, we tested margetuximab plus tebotelimab. In patients with HER2+ tumors treated with tebotelimab plus margetuximab, 74% (62/84) had TRAEs (17% were grade ≥3). The RP2D was 600 mg once every 3 weeks. The confirmed objective response rate in these patients was 19% (14/72), including responses in patients typically not responsive to anti-HER2/anti-PD-1 combination therapy. ClinicalTrials.gov identifier: NCT03219268 .


Evidence-based clinical practice guideline for the pharmacologic management of acute dental pain in children: A report from the American Dental Association Science and Research Institute, the University of Pittsburgh School of Dental Medicine, and the Center for Integrative Global Oral Health at the University of Pennsylvania.

  • Alonso Carrasco-Labra‎ et al.
  • Journal of the American Dental Association (1939)‎
  • 2023‎

A guideline panel convened by the American Dental Association Council on Scientific Affairs, American Dental Association Science and Research Institute, University of Pittsburgh School of Dental Medicine, and Center for Integrative Global Oral Health at the University of Pennsylvania conducted a systematic review and meta-analyses and formulated evidence-based recommendations for the pharmacologic management of acute dental pain after 1 or more simple and surgical tooth extractions and the temporary management of toothache (that is, when definitive dental treatment not immediately available) associated with pulp and furcation or periapical diseases in children (< 12 years).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: