Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

The YΦ motif defines the structure-activity relationships of human 20S proteasome activators.

  • Kwadwo A Opoku-Nsiah‎ et al.
  • Nature communications‎
  • 2022‎

The 20S proteasome (20S) facilitates turnover of most eukaryotic proteins. Substrate entry into the 20S first requires opening of gating loops through binding of HbYX motifs that are present at the C-termini of certain proteasome activators (PAs). The HbYX motif has been predominantly characterized in the archaeal 20S, whereas little is known about the sequence preferences of the human 20S (h20S). Here, we synthesize and screen ~120 HbYX-like peptides, revealing unexpected differences from the archaeal system and defining the h20S recognition sequence as the Y-F/Y (YФ) motif. To gain further insight, we create a functional chimera of the optimized sequence, NLSYYT, fused to the model activator, PA26E102A. A cryo-EM structure of PA26E102A-h20S is used to identify key interactions, including non-canonical contacts and gate-opening mechanisms. Finally, we demonstrate that the YФ sequence preferences are tuned by valency, allowing multivalent PAs to sample greater sequence space. These results expand the model for termini-mediated gating and provide a template for the design of h20S activators.


Antibody-mediated inhibition of TNFR1 attenuates disease in a mouse model of multiple sclerosis.

  • Sarah K Williams‎ et al.
  • PloS one‎
  • 2014‎

Tumour necrosis factor (TNF) is a proinflammatory cytokine that is known to regulate inflammation in a number of autoimmune diseases, including multiple sclerosis (MS). Although targeting of TNF in models of MS has been successful, the pathological role of TNF in MS remains unclear due to clinical trials where the non-selective inhibition of TNF resulted in exacerbated disease. Subsequent experiments have indicated that this may have resulted from the divergent effects of the two TNF receptors, TNFR1 and TNFR2. Here we show that the selective targeting of TNFR1 with an antagonistic antibody ameliorates symptoms of the most common animal model of MS, experimental autoimmune encephalomyelitis (EAE), when given following both a prophylactic and therapeutic treatment regime. Our results demonstrate that antagonistic TNFR1-specific antibodies may represent a therapeutic approach for the treatment of MS in the future.


Early Nodal and Paranodal Disruption in Autoimmune Optic Neuritis.

  • Aleksandar Stojic‎ et al.
  • Journal of neuropathology and experimental neurology‎
  • 2018‎

Disturbances in the nodes of Ranvier are an early phenomenon in many CNS disorders, including the autoimmune demyelinating disease multiple sclerosis (MS). Using an animal model of optic neuritis, a common early symptom of MS, we have investigated nodal and paranodal compartments in the optic nerve during disease progression. Both nodes and paranodes, as identified by immunohistochemistry against sodium channels (Nav) and Caspr, respectively, were observed to increase in length during the late induction phase of the disease, prior to onset of the demyelination and immune cell infiltration characteristic of optic neuritis. These changes were correlated with both axonal stress and microglial/macrophage activation, and were most apparent in the vicinity of the retrobulbar optic nerve head, the unmyelinated region of the optic nerve where retinal ganglion cell axons exit the retina. Using intravitreal glutamate injection as a model of a primary retinal insult, we demonstrate that this can induce similar nodal and paranodal changes. This may suggest that onset of neurodegeneration in the absence of demyelination, as reported in several studies into the nonaffected eyes of MS patients, may give rise to subtle disturbances in the axo-glial junction.


Neuroprotective effects of the cellular prion protein in autoimmune optic neuritis.

  • Sarah K Williams‎ et al.
  • The American journal of pathology‎
  • 2011‎

Although the pathologic role of the prion protein in transmissible spongiform encephalopathic diseases has been widely investigated, the physiologic role of the cellular prion protein (PrP(C)) is not known. Among the many functions attributed to PrP(C), there is increasing evidence that it is involved in cell survival and mediates neuroprotection. A potential role in the immune response has also been suggested. However, how these two functions interplay in autoimmune disease is unclear. To address this, autoimmune optic neuritis, a model of multiple sclerosis, was induced in C57Bl/6 mice, and up-regulation of PrP(C) was observed throughout the disease course. In addition, compared with wild-type mice, in PrP(C)-deficient mice and mice overexpressing PrP(C), histopathologic analysis demonstrated that optic neuritis was exacerbated, as indicated by axonal degeneration, inflammatory infiltration, and demyelination. However, significant neuroprotection of retinal ganglion cells, the axons of which form the optic nerve, was observed in mice that overexpressed PrP(C). Conversely, mice lacking PrP(C) demonstrated significantly more neurodegeneration. This suggests that PrP(C) may have a neuroprotective function independent of its role in regulating the immune response.


Early auto-immune targeting of photoreceptor ribbon synapses in mouse models of multiple sclerosis.

  • Mayur Dembla‎ et al.
  • EMBO molecular medicine‎
  • 2018‎

Optic neuritis is one of the first manifestations of multiple sclerosis. Its pathogenesis is incompletely understood, but considered to be initiated by an auto-immune response directed against myelin sheaths of the optic nerve. Here, we demonstrate in two frequently used and well-validated mouse models of optic neuritis that ribbon synapses in the myelin-free retina are targeted by an auto-reactive immune system even before alterations in the optic nerve have developed. The auto-immune response is directed against two adhesion proteins (CASPR1/CNTN1) that are present both in the paranodal region of myelinated nerves as well as at retinal ribbon synapses. This occurs in parallel with altered synaptic vesicle cycling in retinal ribbon synapses and altered visual behavior before the onset of optic nerve demyelination. These findings indicate that early synaptic dysfunctions in the retina contribute to the pathology of optic neuritis in multiple sclerosis.


Neuroinflammation by cytotoxic T-lymphocytes impairs retrograde axonal transport in an oligodendrocyte mutant mouse.

  • Chi Wang Ip‎ et al.
  • PloS one‎
  • 2012‎

Mice overexpressing proteolipid protein (PLP) develop a leukodystrophy-like disease involving cytotoxic, CD8+ T-lymphocytes. Here we show that these cytotoxic T-lymphocytes perturb retrograde axonal transport. Using fluorogold stereotactically injected into the colliculus superior, we found that PLP overexpression in oligodendrocytes led to significantly reduced retrograde axonal transport in retina ganglion cell axons. We also observed an accumulation of mitochondria in the juxtaparanodal axonal swellings, indicative for a disturbed axonal transport. PLP overexpression in the absence of T-lymphocytes rescued retrograde axonal transport defects and abolished axonal swellings. Bone marrow transfer from wildtype mice, but not from perforin- or granzyme B-deficient mutants, into lymphocyte-deficient PLP mutant mice led again to impaired axonal transport and the formation of axonal swellings, which are predominantly located at the juxtaparanodal region. This demonstrates that the adaptive immune system, including cytotoxic T-lymphocytes which release perforin and granzyme B, are necessary to perturb axonal integrity in the PLP-transgenic disease model. Based on our observations, so far not attended molecular and cellular players belonging to the immune system should be considered to understand pathogenesis in inherited myelin disorders with progressive axonal damage.


Membrane potential measurements of isolated neurons using a voltage-sensitive dye.

  • Richard Fairless‎ et al.
  • PloS one‎
  • 2013‎

The ability to monitor changes in membrane potential is a useful tool for studying neuronal function, but there are only limited options available at present. Here, we have investigated the potential of a commercially available FLIPR membrane potential (FMP) dye, developed originally for high throughput screening using a plate reader, for imaging the membrane potential of cultured cells using an epifluorescence-based single cell imaging system. We found that the properties of the FMP dye make it highly suitable for such imaging since 1) its fluorescence displayed a high signal-to-noise ratio, 2) robust signals meant only minimal exposure times of around 5 ms were necessary, and 3) bidirectional changes in fluorescence were detectable resulting from hyper- or depolarising conditions, reaching equilibrium with a time constant of 4-8 s. Measurements were possible independently of whether membrane potential changes were induced by voltage clamping, or manipulating the ionic distribution of either Na(+) or K(+). Since FMP behaves as a charged molecule which accumulates in the cytosol, equations based on the Boltzmann distribution were developed determining that the apparent charge of FMP which represents a measure of the voltage sensitivity of the dye, is between -0.62 and -0.72. Finally, we demonstrated that FMP is suitable for use in a variety of neuronal cell types and detects membrane potential changes arising from spontaneous firing of action potentials and through stimulation with a variety of excitatory and inhibitory neurotransmitters.


Constitutive and conditional deletion reveals distinct phenotypes driven by developmental versus neurotransmitter actions of the neuropeptide PACAP.

  • Dana Bakalar‎ et al.
  • Journal of neuroendocrinology‎
  • 2023‎

Neuropeptides may exert trophic effects during development, and then neurotransmitter roles in the developed nervous system. One way to associate peptide-deficiency phenotypes with either role is first to assess potential phenotypes in so-called constitutive knockout mice, and then proceed to specify, regionally and temporally, where and when neuropeptide expression is required to prevent these phenotypes. We have previously demonstrated that the well-known constellation of behavioral and metabolic phenotypes associated with constitutive pituitary adenylate cyclase-activating peptide (PACAP) knockout mice are accompanied by transcriptomic alterations of two types: those that distinguish the PACAP-null phenotype from wild-type (WT) in otherwise quiescent mice (cPRGs), and gene induction that occurs in response to acute environmental perturbation in WT mice that do not occur in knockout mice (aPRGs). Comparing constitutive PACAP knockout mice to a variety of temporally and regionally specific PACAP knockouts, we show that the prominent hyperlocomotor phenotype is a consequence of early loss of PACAP expression, is associated with Fos overexpression in hippocampus and basal ganglia, and that a thermoregulatory effect previously shown to be mediated by PACAP-expressing neurons of medial preoptic hypothalamus is independent of PACAP expression in those neurons in adult mice. In contrast, PACAP dependence of weight loss/hypophagia triggered by restraint stress, seen in constitutive PACAP knockout mice, is phenocopied in mice in which PACAP is deleted after neuronal differentiation. Our results imply that PACAP has a prominent role as a trophic factor early in development determining global central nervous system characteristics, and in addition a second, discrete set of functions as a neurotransmitter in the fully developed nervous system that support physiological and psychological responses to stress.


The TNFR1 Antagonist Atrosimab Is Therapeutic in Mouse Models of Acute and Chronic Inflammation.

  • Fabian Richter‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Therapeutics that block tumor necrosis factor (TNF), and thus activation of TNF receptor 1 (TNFR1) and TNFR2, are clinically used to treat inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. However, TNFR1 and TNFR2 work antithetically to balance immune responses involved in inflammatory diseases. In particular, TNFR1 promotes inflammation and tissue degeneration, whereas TNFR2 contributes to immune modulation and tissue regeneration. We, therefore, have developed the monovalent antagonistic anti-TNFR1 antibody derivative Atrosimab to selectively block TNFR1 signaling, while leaving TNFR2 signaling unaffected. Here, we describe that Atrosimab is highly stable at different storage temperatures and demonstrate its therapeutic efficacy in mouse models of acute and chronic inflammation, including experimental arthritis, non-alcoholic steatohepatitis (NASH) and experimental autoimmune encephalomyelitis (EAE). Our data support the hypothesis that it is sufficient to block TNFR1 signaling, while leaving immune modulatory and regenerative responses via TNFR2 intact, to induce therapeutic effects. Collectively, we demonstrate the therapeutic potential of the human TNFR1 antagonist Atrosimab for treatment of chronic inflammatory diseases.


Anti-TNFR1 targeting in humanized mice ameliorates disease in a model of multiple sclerosis.

  • Sarah K Williams‎ et al.
  • Scientific reports‎
  • 2018‎

Tumour necrosis factor (TNF) signalling is mediated via two receptors, TNF-receptor 1 (TNFR1) and TNF-receptor 2 (TNFR2), which work antithetically to balance CNS immune responses involved in autoimmune diseases such as multiple sclerosis. To determine the therapeutic potential of selectively inhibiting TNFR1 in mice with experimental autoimmune encephalomyelitis, we used chimeric human/mouse TNFR1 knock-in mice allowing the evaluation of antagonistic anti-human TNFR1 antibody efficacy. Treatment of mice after onset of disease with ATROSAB resulted in a robust amelioration of disease severity, correlating with reduced central nervous system immune cell infiltration. Long-term efficacy of treatment was achieved by treatment with the parental mouse anti-human TNFR1 antibody, H398, and extended by subsequent re-treatment of mice following relapse. Our data support the hypothesis that anti-TNFR1 therapy restricts immune cell infiltration across the blood-brain barrier through the down-regulation of TNF-induced adhesion molecules, rather than altering immune cell composition or activity. Collectively, we demonstrate the potential for anti-human TNFR1 therapies to effectively modulate immune responses in autoimmune disease.


Preclinical stress originates in the rat optic nerve head during development of autoimmune optic neuritis.

  • Aleksandar Stojic‎ et al.
  • Glia‎
  • 2019‎

Optic neuritis is a common manifestation of multiple sclerosis, an inflammatory demyelinating disease of the CNS. Although it is the presenting symptom in many cases, the initial events are currently unknown. However, in the earliest stages of autoimmune optic neuritis in rats, pathological changes are already apparent such as microglial activation and disturbances in myelin ultrastructure of the optic nerves. αB-crystallin is a heat-shock protein induced in cells undergoing cellular stress and has been reported to be up-regulated in both multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Therefore, we wished to investigate the timing and localization of its expression in autoimmune optic neuritis. Although loss of oligodendrocytes was not observed until the later disease stages accompanying immune cell infiltration and demyelination, an increase in oligodendrocyte αB-crystallin was observed during the preclinical stages. This was most pronounced within the optic nerve head and was associated with areas of IgG deposition. Since treatment of isolated oligodendrocytes with sera from myelin oligodendrocyte glycoprotein (MOG)-immunized animals induced an increase in αB-crystallin expression, as did passive transfer of sera from MOG-immunized animals to unimmunized recipients, we propose that the partially permeable blood-brain barrier of the optic nerve head may present an opportunity for blood-borne components such as anti-MOG antibodies to come into contact with oligodendrocytes as one of the earliest events in disease development.


Simultaneous prenatal ethanol and nicotine exposure affect ethanol consumption, ethanol preference and oxytocin receptor binding in adolescent and adult rats.

  • Sarah K Williams‎ et al.
  • Neurotoxicology and teratology‎
  • 2009‎

Ethanol consumption and smoking during pregnancy are common, despite the known adverse effects on the fetus. The teratogenicity of each drug independently is well established; however, the effects of concurrent exposure to ethanol and nicotine in preclinical models remain unclear. This study examined the impact of simultaneous prenatal exposure to both ethanol and nicotine on offspring ethanol preference behaviors and oxytocin system dynamics. Rat dams were given liquid diet (17% ethanol derived calories (EDC)) on gestational day (GD) 5 and 35% EDC from GD 6-20 and concurrently an osmotic minipump delivered nicotine (3-6mg/kg/day) from GD 4-postpartum day 10. Offspring were tested for ethanol preference during adolescence (postnatal day (PND) 30-43) and again at adulthood (PND 60-73), followed by assays for oxytocin mRNA expression and receptor binding in relevant brain regions. Prenatal exposure decreased ethanol preference in males during adolescence, and decreased consumption and preference in females during adulthood compared to controls. Oxytocin receptor binding in the nucleus accumbens and hippocampus was increased in adult prenatally exposed males only. Prenatal exposure to these drugs sex-specifically decreased ethanol preference behavior in offspring unlike reports for either drug separately. The possible role of oxytocin in reduction of ethanol consumption behavior is highlighted.


Tryptophan-2,3-Dioxygenase (TDO) deficiency is associated with subclinical neuroprotection in a mouse model of multiple sclerosis.

  • Tobias V Lanz‎ et al.
  • Scientific reports‎
  • 2017‎

The catabolism of tryptophan to immunosuppressive and neuroactive kynurenines is a key metabolic pathway regulating immune responses and neurotoxicity. The rate-limiting step is controlled by indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO). IDO is expressed in antigen presenting cells during immune reactions, hepatic TDO regulates blood homeostasis of tryptophan and neuronal TDO influences neurogenesis. While the role of IDO has been described in multiple immunological settings, little is known about TDO's effects on the immune system. TDO-deficiency is neuroprotective in C. elegans and Drosophila by increasing tryptophan and specific kynurenines. Here we have determined the role of TDO in autoimmunity and neurodegeneration in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. We created reporter-TDO mice for in vivo imaging to show that hepatic but not CNS TDO expression is activated during EAE. TDO deficiency did not influence myelin-specific T cells, leukocyte infiltration into the CNS, demyelination and disease activity. TDO-deficiency protected from neuronal loss in the spinal cord but not in the optic nerves. While this protection did not translate to an improved overt clinical outcome, our data suggest that spatially distinct neuroprotection is conserved in mammals and support TDO as a potential target for treatment of diseases associated with neurodegeneration.


Influence of retinal NMDA receptor activity during autoimmune optic neuritis.

  • Jovana Bojcevski‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

Autoimmune optic neuritis (AON), a model of multiple sclerosis-associated optic neuritis, is accompanied by degeneration of retinal ganglion cells (RGCs) and optic nerve demyelination and axonal loss. In order to investigate the role of N-methyl-d-aspartate (NMDA) receptors in mediating RGC degeneration, upstream changes in the optic nerve actin cytoskeleton and associated deterioration in visual function, we induced AON in Brown Norway rats by immunization with myelin oligodendrocyte glycoprotein. Subsequently, visual acuity was assessed by recording visual evoked potentials and electroretinograms prior to extraction of optic nerves for western blot analysis and retinas for quantification of RGCs. As previously reported, in Brown Norway rats RGC degeneration is observed prior to onset of immune cell infiltration and demyelination of the optic nerves. However, within the optic nerve, destabilization of the actin cytoskeleton could be seen as indicated by an increase in the globular to filamentous actin ratio. Interestingly, these changes could be mimicked by intravitreal injection of glutamate, and similarly blocked by application of the NMDA receptor blocker MK-801, leading us to propose that prior to optic nerve lesion formation, NMDA receptor activation within the retina leads to retinal calcium accumulation, actin destabilization within the optic nerve as well as a deterioration of visual acuity during AON.


Co-modulation of TNFR1 and TNFR2 in an animal model of multiple sclerosis.

  • Timon Fiedler‎ et al.
  • Journal of neuroinflammation‎
  • 2023‎

Tumour necrosis factor (TNF) is a pleiotropic cytokine and master regulator of the immune system. It acts through two receptors resulting in often opposing biological effects, which may explain the lack of therapeutic potential obtained so far in multiple sclerosis (MS) with non-receptor-specific anti-TNF therapeutics. Under neuroinflammatory conditions, such as MS, TNF receptor-1 (TNFR1) is believed to mediate the pro-inflammatory activities associated with TNF, whereas TNF receptor-2 (TNFR2) may instead induce anti-inflammatory effects as well as promote remyelination and neuroprotection. In this study, we have investigated the therapeutic potential of blocking TNFR1 whilst simultaneously stimulating TNFR2 in a mouse model of MS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: