Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Controlling automatic imitative tendencies: interactions between mirror neuron and cognitive control systems.

  • Katy A Cross‎ et al.
  • NeuroImage‎
  • 2013‎

Humans have an automatic tendency to imitate others. Although several regions commonly observed in social tasks have been shown to be involved in imitation control, there is little work exploring how these regions interact with one another. We used fMRI and dynamic causal modeling to identify imitation-specific control mechanisms and examine functional interactions between regions. Participants performed a pre-specified action (lifting their index or middle finger) in response to videos depicting the same two actions (biological cues) or dots moving with similar trajectories (non-biological cues). On congruent trials, the stimulus and response were similar (e.g. index finger response to index finger or left side dot stimulus), while on incongruent trials the stimulus and response were dissimilar (e.g. index finger response to middle finger or right side dot stimulus). Reaction times were slower on incongruent compared to congruent trials for both biological and non-biological stimuli, replicating previous findings that suggest the automatic imitative or spatially compatible (congruent) response must be controlled on incongruent trials. Neural correlates of the congruency effects were different depending on the cue type. The medial prefrontal cortex, anterior cingulate, inferior frontal gyrus pars opercularis (IFGpo) and the left anterior insula were involved specifically in controlling imitation. In addition, the IFGpo was also more active for biological compared to non-biological stimuli, suggesting that the region represents the frontal node of the human mirror neuron system (MNS). Effective connectivity analysis exploring the interactions between these regions, suggests a role for the mPFC and ACC in imitative conflict detection and the anterior insula in conflict resolution processes, which may occur through interactions with the frontal node of the MNS. We suggest an extension of the previous models of imitation control involving interactions between imitation-specific and general cognitive control mechanisms.


Statistical power comparisons at 3T and 7T with a GO / NOGO task.

  • Salvatore Torrisi‎ et al.
  • NeuroImage‎
  • 2018‎

The field of cognitive neuroscience is weighing evidence about whether to move from standard field strength to ultra-high field (UHF). The present study contributes to the evidence by comparing a cognitive neuroscience paradigm at 3 Tesla (3T) and 7 Tesla (7T). The goal was to test and demonstrate the practical effects of field strength on a standard GO/NOGO task using accessible preprocessing and analysis tools. Two independent matched healthy samples (N = 31 each) were analyzed at 3T and 7T. Results show gains at 7T in statistical strength, the detection of smaller effects and group-level power. With an increased availability of UHF scanners, these gains may be exploited by cognitive neuroscientists and other neuroimaging researchers to develop more efficient or comprehensive experimental designs and, given the same sample size, achieve greater statistical power at 7T.


Normal amygdala activation but deficient ventrolateral prefrontal activation in adults with bipolar disorder during euthymia.

  • Lara C Foland-Ross‎ et al.
  • NeuroImage‎
  • 2012‎

Functional neuroimaging studies have implicated the involvement of the amygdala and ventrolateral prefrontal cortex (vlPFC) in the pathophysiology of bipolar disorder. Hyperactivity in the amygdala and hypoactivity in the vlPFC have been reported in manic bipolar patients scanned during the performance of an affective faces task. Whether this pattern of dysfunction persists during euthymia is unclear. Using functional magnetic resonance imaging (fMRI), 24 euthymic bipolar and 26 demographically matched healthy control subjects were scanned while performing an affective task paradigm involving the matching and labeling of emotional facial expressions. Neuroimaging results showed that, while amygdala activation did not differ significantly between groups, euthymic patients showed a significant decrease in activation of the right vlPFC (BA47) compared to healthy controls during emotion labeling. Additionally, significant decreases in activation of the right insula, putamen, thalamus and lingual gyrus were observed in euthymic bipolar relative to healthy control subjects during the emotion labeling condition. These data, taken in context with prior studies of bipolar mania using the same emotion recognition task, could suggest that amygdala dysfunction may be a state-related abnormality in bipolar disorder, whereas vlPFC dysfunction may represent a trait-related abnormality of the illness. Characterizing these patterns of activation is likely to help in understanding the neural changes related to the different mood states in bipolar disorder, as well as changes that represent more sustained abnormalities. Future studies that assess mood-state related changes in brain activation in longitudinal bipolar samples would be of interest.


Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field.

  • Salvatore Torrisi‎ et al.
  • Human brain mapping‎
  • 2015‎

The bed nucleus of the stria terminalis (BNST), a portion of the "extended amygdala," is implicated in the pathophysiology of anxiety and addiction disorders. Its small size and connection to other small regions prevents standard imaging techniques from easily capturing it and its connectivity with confidence. Seed-based resting state functional connectivity is an established method for mapping functional connections across the brain from a region of interest. We, therefore, mapped the BNST resting state network with high spatial resolution using 7 Tesla fMRI, demonstrating the in vivo reproduction of many human BNST connections previously described only in animal research. We identify strong BNST functional connectivity in amygdala, hippocampus and thalamic subregions, caudate, periaqueductal gray, hypothalamus, and cortical areas such as the medial PFC and precuneus. This work, which demonstrates the power of ultra-high field for mapping functional connections in the human, is an important step toward elucidating cortical and subcortical regions and subregions of the BNST network.


Intrinsic functional connectivity of the central extended amygdala.

  • Rachael M Tillman‎ et al.
  • Human brain mapping‎
  • 2018‎

The central extended amygdala (EAc)-including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)-plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community-dwelling adults. Multiband imaging, high-precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole-brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with "deidentified" neuroimaging data.


Intrinsic functional connectivity of the central nucleus of the amygdala and bed nucleus of the stria terminalis.

  • Adam X Gorka‎ et al.
  • NeuroImage‎
  • 2018‎

The central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST), two nuclei within the central extended amygdala, function as critical relays within the distributed neural networks that coordinate sensory, emotional, and cognitive responses to threat. These structures have overlapping anatomical projections to downstream targets that initiate defensive responses. Despite these commonalities, researchers have also proposed a functional dissociation between the CeA and BNST, with the CeA promoting responses to discrete stimuli and the BNST promoting responses to diffuse threat. Intrinsic functional connectivity (iFC) provides a means to investigate the functional architecture of the brain, unbiased by task demands. Using ultra-high field neuroimaging (7-Tesla fMRI), which provides increased spatial resolution, this study compared the iFC networks of the CeA and BNST in 27 healthy individuals. Both structures were coupled with areas of the medial prefrontal cortex, hippocampus, thalamus, and periaqueductal gray matter. Compared to the BNST, the bilateral CeA was more strongly coupled with the insula and regions that support sensory processing, including thalamus and fusiform gyrus. In contrast, the bilateral BNST was more strongly coupled with regions involved in cognitive and motivational processes, including the dorsal paracingulate gyrus, posterior cingulate cortex, and striatum. Collectively, these findings suggest that responses to sensory stimulation are preferentially coordinated by the CeA and cognitive and motivational responses are preferentially coordinated by the BNST.


Differences in resting corticolimbic functional connectivity in bipolar I euthymia.

  • Salvatore Torrisi‎ et al.
  • Bipolar disorders‎
  • 2013‎

  We examined resting state functional connectivity in the brain between key emotion regulation regions in bipolar I disorder to delineate differences in coupling from healthy subjects.


Extended amygdala connectivity changes during sustained shock anticipation.

  • Salvatore Torrisi‎ et al.
  • Translational psychiatry‎
  • 2018‎

The bed nucleus of the stria terminalis (BNST) and central amygdala (CeA) of the extended amygdala are small, anatomically interconnected brain regions. They are thought to mediate responses to sustained, unpredictable threat stimuli and phasic, predictable threat stimuli, respectively. They perform these operations largely through their interconnected networks. In two previous studies, we mapped and contrasted the resting functional connectivity networks of the BNST and CeA at 7 Tesla with high resolution. This follow-up study investigates the changes in functional connectivity of these structures during sustained anticipation of electric shock. Results show that the BNST and CeA become less strongly coupled with the ventromedial prefrontal cortex (vmPFC), cingulate, and nucleus accumbens in shock threat relative to a safety condition. In addition, the CeA becomes more strongly coupled with the thalamus under threat. An exploratory, whole-brain connectivity analysis reveals that, although the BNST/CeA exhibits generally decreased connectivity, many other cortical regions demonstrate greater coupling under threat than safety. Understanding the differential network structures of these two regions and how they contribute to processing under threat will help elucidate the building blocks of the anxious state.


Striatal responsiveness to reward under threat-of-shock and working memory load: A preliminary study.

  • Claudie Gaillard‎ et al.
  • Brain and behavior‎
  • 2019‎

Reward and stress are important determinants of motivated behaviors. Striatal regions play a crucial role in both motivation and hedonic processes. So far, little is known on how cognitive effort interacts with stress to modulate reward processes. This study examines how cognitive effort (load) interacts with an unpredictable acute stressor (threat-of-shock) to modulate motivational and hedonic processes in healthy adults.


Resting state connectivity of the human habenula at ultra-high field.

  • Salvatore Torrisi‎ et al.
  • NeuroImage‎
  • 2017‎

The habenula, a portion of the epithalamus, is implicated in the pathophysiology of depression, anxiety and addiction disorders. Its small size and connection to other small regions prevent standard human imaging from delineating its structure and connectivity with confidence. Resting state functional connectivity is an established method for mapping connections across the brain from a seed region of interest. The present study takes advantage of 7T fMRI to map, for the first time, the habenula resting state network with very high spatial resolution in 32 healthy human participants. Results show novel functional connections in humans, including functional connectivity with the septum and bed nucleus of the stria terminalis (BNST). Results also show many habenula connections previously described only in animal research, such as with the nucleus basalis of Meynert, dorsal raphe, ventral tegmental area (VTA), and periaqueductal grey (PAG). Connectivity with caudate, thalamus and cortical regions such as the anterior cingulate, retrosplenial cortex and auditory cortex are also reported. This work, which demonstrates the power of ultra-high field for mapping human functional connections, is a valuable step toward elucidating subcortical and cortical regions of the habenula network.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: