Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

The dynamics of spleen morphogenesis.

  • Sally F Burn‎ et al.
  • Developmental biology‎
  • 2008‎

The mammalian spleen has important functions in immunity and haematopoiesis but little is known about the events that occur during its early embryonic development. Here we analyse the origin of the cells that gives rise to the splenic mesenchyme and the process by which the precursors assume their position along the left lateral side of the stomach. We report a highly conserved regulatory element that regulates the Nkx2-5 gene throughout early spleen development. A transgenic mouse line carrying this element driving a reporter gene was used to show that morphogenesis of the spleen initiates bilaterally and posterior to the stomach, before the splenic precursors grow preferentially leftward. In addition the transgenic line was used in an organ culture system to track spleen precursor cells during development. Spleen cells were shown to move from the posterior mesenchyme and track along the left side of the stomach. Removal of tissue from the anterior stomach resulted in splenic cells randomly scattering suggesting a guidance role for the anterior stomach. Using a mouse line carrying a conditional Cre recombinase to mark early precursor cell populations, the spleen was found to derive from posterior mesenchyme distinct from the closely adjacent stomach mesenchyme.


Postimplantation Mga expression and embryonic lethality of two gene-trap alleles.

  • Sally F Burn‎ et al.
  • Gene expression patterns : GEP‎
  • 2018‎

The dual-specificity T-box/basic helix-loop-helix leucine zipper transcription factor MGA is part of the MAX-interacting network of proteins. In the mouse, MGA is necessary for the survival of the pluripotent epiblast cells of the peri-implantation embryo and a null, gene-trap allele MgaGt results in embryonic lethality shortly after implantation. We have used this allele to document expression of Mga in postimplantation embryos and also investigated a second, hypomorphic gene-trap allele, MgaInv.


Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron.

  • Nils O Lindström‎ et al.
  • eLife‎
  • 2015‎

The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: