Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Combining metformin and esomeprazole is additive in reducing sFlt-1 secretion and decreasing endothelial dysfunction - implications for treating preeclampsia.

  • Tu'uhevaha J Kaitu'u-Lino‎ et al.
  • PloS one‎
  • 2018‎

The discovery of new treatments that prevent or treat preeclampsia would be a major advance. Antiangiogenic factors soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sENG) are secreted in excess from the placenta, causing hypertension, endothelial dysfunction, and multiorgan injury. We recently identified metformin and esomeprazole as potential treatments for preeclampsia. Both reduce placental and endothelial secretion of sFlt-1 and soluble endoglin, and reduce endothelial dysfunction.


Circulating mRNAs are differentially expressed in pregnancies with severe placental insufficiency and at high risk of stillbirth.

  • Natalie J Hannan‎ et al.
  • BMC medicine‎
  • 2020‎

Fetuses affected by placental insufficiency do not receive adequate nutrients and oxygenation, become growth restricted and acidemic, and can demise. Preterm fetal growth restriction is a severe form of placental insufficiency with a high risk of stillbirth. We set out to identify maternal circulating mRNA transcripts that are differentially expressed in preterm pregnancies complicated by very severe placental insufficiency, in utero fetal acidemia, and are at very high risk of stillbirth.


DAAM2 is elevated in the circulation and placenta in pregnancies complicated by fetal growth restriction and is regulated by hypoxia.

  • Natasha de Alwis‎ et al.
  • Scientific reports‎
  • 2021‎

Previously, we identified increased maternal circulating DAAM2 mRNA in pregnancies complicated by preterm fetal growth restriction (FGR). Here, we assessed whether circulating DAAM2 mRNA could detect FGR, and whether the DAAM2 gene, known to play roles in the Wnt signalling pathway is expressed in human placenta and associated with dysfunction and FGR. We performed linear regression analysis to calculate area under the ROC curve (AUC) for DAAM2 mRNA expression in the maternal circulation of pregnancies complicated by preterm FGR. DAAM2 mRNA expression was assessed across gestation by qPCR. DAAM2 protein and mRNA expression was assessed in preterm FGR placenta using western blot and qPCR. DAAM2 expression was assessed in term cytotrophoblasts and placental explant tissue cultured under hypoxic and normoxic conditions by qPCR. Small interfering RNAs were used to silence DAAM2 in term primary cytotrophoblasts. Expression of growth, apoptosis and oxidative stress genes were assessed by qPCR. Circulating DAAM2 mRNA was elevated in pregnancies complicated by preterm FGR [p < 0.0001, AUC = 0.83 (0.78-0.89)]. Placental DAAM2 mRNA was detectable across gestation, with highest expression at term. DAAM2 protein was increased in preterm FGR placentas but demonstrated no change in mRNA expression. DAAM2 mRNA expression was increased in cytotrophoblasts and placental explants under hypoxia. Silencing DAAM2 under hypoxia decreased expression of pro-survival gene, BCL2 and oxidative stress marker, NOX4, whilst increasing expression of antioxidant enzyme, HMOX-1. The increased DAAM2 associated with FGR and hypoxia implicates a potential role in placental dysfunction. Decreasing DAAM2 may have cytoprotective effects, but further research is required to elucidate its role in healthy and dysfunctional placentas.


Hydroxychloroquine reduces soluble Flt-1 secretion from human cytotrophoblast, but does not mitigate markers of endothelial dysfunction in vitro.

  • Elif Kadife‎ et al.
  • PloS one‎
  • 2022‎

Preeclampsia is a multi-system disease that can have severe, even fatal implications for the mother and fetus. Abnormal placentation can lead to ischaemic tissue injury and placental inflammation. In turn, the placenta releases anti-angiogenic factors into the maternal circulation. These systemically act to neutralise angiogenic factors causing endothelial dysfunction causing preeclampsia. Hydroxychloroquine is an immune modulating drug that is considered safe in pregnancy. There is epidemiological evidence suggesting it may reduce the risk of preeclampsia. Here, we examined the effects hydroxychloroquine on the production and secretion of sFlt-1, soluble endoglin (sENG), placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) in primary human placenta, cytotrophoblasts and umbilical vein endothelial cells (endothelial cell model). Hydroxychloroquine treatment decreased mRNA expression of two sFlt-1 isoforms and its protein secretion. sENG was not reduced. Hydroxychloroquine treatment increased secretion of pro-angiogenic factor PIGF from endothelial cells. It did not significantly reduce the expression of the endothelial cell inflammation marker, ET-1, and inflammation induced expression of the adhesion molecule, VCAM. Hydroxychloroquine could not overcome leukocyte adhesion to endothelial cells. Hydroxychloroquine mitigates features of preeclampsia, but it does not reduce key markers of endothelial dysfunction.


Transcriptomic analysis of patient plasma reveals circulating miR200c as a potential biomarker for high-grade serous ovarian cancer.

  • Natalie J Hannan‎ et al.
  • Gynecologic oncology reports‎
  • 2022‎

High-grade serous tubo-ovarian cancer (HGSC) is the most common histological subtype of epithelial ovarian cancer, and highly lethal. Currently there is no effective screening test and prognosis is poor as the majority of cases are diagnosed at the advanced stage. Cell free RNAs including microRNAs (miRNAs) are dysregulated in ovarian cancer tissue and are detectable in the circulation. This study aimed to determine whether circulating cell free miRNAs may be potential biomarkers for the detection of HGSC.


Melatonin enhances antioxidant molecules in the placenta, reduces secretion of soluble fms-like tyrosine kinase 1 (sFLT) from primary trophoblast but does not rescue endothelial dysfunction: An evaluation of its potential to treat preeclampsia.

  • Natalie J Hannan‎ et al.
  • PloS one‎
  • 2018‎

Preeclampsia is one of the most serious complications of pregnancy. Currently there are no medical treatments. Given placental oxidative stress may be an early trigger in the pathogenesis of preeclampsia, therapies that enhance antioxidant pathways have been proposed as treatments. Melatonin is a direct free-radical scavenger and indirect antioxidant. We performed in vitro assays to assess whether melatonin 1) enhances the antioxidant response element genes (heme-oxygenase 1, (HO-1), glutamate-cysteine ligase (GCLC), NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), thioredoxin (TXN)) or 2) alters secretion of the anti-angiogenic factors soluble fms-like tyrosine kinase-1 (sFLT) or soluble endoglin (sENG) from human primary trophoblasts, placental explants and human umbilical vein endothelial cells (HUVECs) and 3) can rescue TNF-α induced endothelial dysfunction. In primary trophoblast melatonin treatment increased expression of the antioxidant enzyme TXN. Expression of TXN, GCLC and NQO1 was upregulated in placental tissue with melatonin treatment. HUVECs treated with melatonin showed an increase in both TXN and GCLC. Melatonin did not increase HO-1 expression in any of the tissues examined. Melatonin reduced sFLT secretion from primary trophoblasts, but had no effect on sFLT or sENG secretion from placental explants or HUVECs. Melatonin did not rescue TNF-α induced VCAM-1 and ET-1 expression in endothelial cells. Our findings suggest that melatonin induces antioxidant pathways in placenta and endothelial cells. Furthermore, it may have effects in reducing sFLT secretion from trophoblast, but does not reduce endothelial dysfunction. Given it is likely to be safe in pregnancy, it may have potential as a therapeutic agent to treat or prevent preeclampsia.


Resveratrol inhibits release of soluble fms-like tyrosine kinase (sFlt-1) and soluble endoglin and improves vascular dysfunction - implications as a preeclampsia treatment.

  • Natalie J Hannan‎ et al.
  • Scientific reports‎
  • 2017‎

Preeclampsia is a disease of pregnancy associated with placental oxidative stress, inflammation and elevated release of anti-angiogenic factors sFlt-1 and soluble endoglin. These placental factors cause generalized maternal endothelial dysfunction. There are no treatments to halt disease progression; delivery is the only cure. Resveratrol modulates pathways involved in inflammation and oxidative stress and may offer a potential therapeutic for preeclampsia. Resveratrol reduced sFlt-1, sFlt-1 e15a and soluble endoglin secretion from primary trophoblasts and HUVECs and reduced mRNA expression of pro-inflammatory molecules NFκB, IL-6 and IL-1β in trophoblasts. IL-6, IL-1β and TNFα secretion were also significantly reduced. In HUVECs, resveratrol significantly increased mRNA of anti-oxidant enzymes HO-1, NQO1, GCLC and TXN but did not significantly alter HO-1 protein expression, whilst reducing HO-1 protein in trophoblast. Endothelial dysfunction was induced in HUVECs using TNFα, increasing expression of cell adhesion molecule VCAM1 and adhesion of peripheral blood mononuclear cells, both of which were increased further by resveratrol. In contrast, resveratrol significantly reduced TNFα-induced Endothelin-1 (a vasoconstrictor) and significantly increased the phosphorylation of endothelial nitric oxide synthase (eNOS). In summary, resveratrol decreases secretion of anti-angiogenic factors however its effects on the endothelium are mixed. Overall, it may have potential as a treatment for preeclampsia.


Assessment of the tocolytic nifedipine in preclinical primary models of preterm birth.

  • Bridget M Arman‎ et al.
  • Scientific reports‎
  • 2023‎

Spontaneous preterm birth is the leading cause of perinatal morbidity and mortality. Tocolytics are drugs used in cases of imminent preterm birth to inhibit uterine contractions. Nifedipine is a calcium channel blocking agent used to delay threatened spontaneous preterm birth, however, has limited efficacy and lacks preclinical data regarding mechanisms of action. It is unknown if nifedipine affects the pro-inflammatory environment associated with preterm labour pathophysiology and we hypothesise nifedipine only targets myometrial contraction rather than also mitigating inflammation. We assessed anti-inflammatory and anti-contractile effects of nifedipine on human myometrium using in vitro and ex vivo techniques, and a mouse model of preterm birth. We show that nifedipine treatment inhibited contractions in myometrial in vitro contraction assays (P = 0.004 vs. vehicle control) and potently blocked spontaneous and oxytocin-induced contractions in ex vivo myometrial tissue in muscle myography studies (P = 0.01 vs. baseline). Nifedipine treatment did not reduce gene expression or protein secretion of pro-inflammatory cytokines in either cultured myometrial cells or ex vivo tissues. Although nifedipine could delay preterm birth in some mice, this was not consistent in all dams and was overall not statistically significant. Our data suggests nifedipine does not modulate preterm birth via inflammatory pathways in the myometrium, and this may account for its limited clinical efficacy.


Key players of the necroptosis pathway RIPK1 and SIRT2 are altered in placenta from preeclampsia and fetal growth restriction.

  • Natalie J Hannan‎ et al.
  • Placenta‎
  • 2017‎

Preeclampsia (PE) and fetal growth restriction (FGR) are among the leading causes of perinatal morbidity and mortality. Placental insufficiency is central to these conditions. The mechanisms underlying placental insufficiency are poorly understood. Apoptosis has long been considered the only form of regulated cell death, recent research has identified an alternate process of programmed cell death known as necroptosis [1]. Necroptosis is distinct from apoptosis, relying on the deacetylase sirtuin-2 [2], receptor interacting kinases RIPK1 and 3, and the pseudokinase MLKL [3]. We aimed to determine whether these key necroptosis effector molecules were present in human placenta and whether they are differentially expressed in severe preterm (PT) PE and FGR.


Cell-type-specific transcriptional profiles of the dimorphic pathogen Penicillium marneffei reflect distinct reproductive, morphological, and environmental demands.

  • Shivani Pasricha‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2013‎

Penicillium marneffei is an opportunistic human pathogen endemic to Southeast Asia. At 25° P. marneffei grows in a filamentous hyphal form and can undergo asexual development (conidiation) to produce spores (conidia), the infectious agent. At 37° P. marneffei grows in the pathogenic yeast cell form that replicates by fission. Switching between these growth forms, known as dimorphic switching, is dependent on temperature. To understand the process of dimorphic switching and the physiological capacity of the different cell types, two microarray-based profiling experiments covering approximately 42% of the genome were performed. The first experiment compared cells from the hyphal, yeast, and conidiation phases to identify "phase or cell-state-specific" gene expression. The second experiment examined gene expression during the dimorphic switch from one morphological state to another. The data identified a variety of differentially expressed genes that have been organized into metabolic clusters based on predicted function and expression patterns. In particular, C-14 sterol reductase-encoding gene ergM of the ergosterol biosynthesis pathway showed high-level expression throughout yeast morphogenesis compared to hyphal. Deletion of ergM resulted in severe growth defects with increased sensitivity to azole-type antifungal agents but not amphotericin B. The data defined gene classes based on spatio-temporal expression such as those expressed early in the dimorphic switch but not in the terminal cell types and those expressed late. Such classifications have been helpful in linking a given gene of interest to its expression pattern throughout the P. marneffei dimorphic life cycle and its likely role in pathogenicity.


Investigating the Effects of Atrial Natriuretic Peptide on the Maternal Endothelium to Determine Potential Implications for Preeclampsia.

  • Natalie K Binder‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Preeclampsia is associated with an increased lifelong risk of cardiovascular disease (CVD). It is not clear whether this is induced by persistent systemic organ and vascular damage following preeclampsia or due to a predisposition to both conditions that share cardiovascular pathophysiology. Common to both CVD and preeclampsia is the dysregulation of corin and its proteolytic product, atrial natriuretic peptide (ANP). ANP, a hypotensive hormone converted from pro-ANP by corin, is involved in blood pressure homeostasis. While corin is predominantly a cardiac enzyme, both corin and pro-ANP are significantly upregulated in the gravid uterus and dysregulated in preeclampsia. Relatively little is known about ANP function in the endothelium during a pregnancy complicated by preeclampsia. Here, we investigated the effect of ANP on endothelial cell proliferation and migration, markers of endothelial dysfunction, and receptor expression in omental arteries exposed to circulating preeclamptic toxins. ANP receptor expression is significantly upregulated in preeclamptic vasculature but not because of exposure to preeclampsia toxins tumour necrosis factor α or soluble fms-like tyrosine kinase-1. The supplementation of endothelial cells with ANP did not promote proliferation or migration, nor did ANP improve markers of endothelial dysfunction. The role of ANP in preeclampsia is unlikely to be via endothelial pathways.


NR4A2 expression is not altered in placentas from cases of growth restriction or preeclampsia, but is reduced in hypoxic cytotrophoblast.

  • Natasha de Alwis‎ et al.
  • Scientific reports‎
  • 2021‎

Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2) transcripts are elevated in the circulation of individuals whose pregnancies are complicated by preterm fetal growth restriction (FGR). In this paper, we show that the cases with preeclampsia (PE) have increased circulating NR4A2 transcripts compared to those with normotensive FGR. We aimed to establish whether the dysfunctional placenta mirrors the increase in NR4A2 transcripts and further, to uncover the function of placental NR4A2. NR4A2 expression was detected in preterm and term placental tissue; expressed higher at term. NR4A2 mRNA expression and protein were not altered in placentas from preterm FGR or PE pregnancies. Hypoxia (1% O2 compared to 8% O2) significantly reduced cytotrophoblast NR4A2 mRNA expression, but not placental explant NR4A2 expression. Silencing cytotrophoblast NR4A2 expression under hypoxia (via short interfering (si)RNAs) did not alter angiogenic Placental Growth Factor, nor anti-angiogenic sFlt-1 mRNA expression or protein secretion, but increased expression of cellular antioxidant, oxidative stress, inflammatory, and growth genes. NR4A2 expression was also not altered in a model of tumour necrosis factor-α-induced endothelial dysfunction, or with pravastatin treatment. Further studies are required to identify the origin of the circulating transcripts in pathological pregnancies, and investigate the function of placental NR4A2.


Assessment of the Proton Pump Inhibitor, Esomeprazole Magnesium Hydrate and Trihydrate, on Pathophysiological Markers of Preeclampsia in Preclinical Human Models of Disease.

  • Natasha de Alwis‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Previously, we demonstrated that the proton pump inhibitor, esomeprazole magnesium hydrate (MH), could have potential as a repurposed treatment against preeclampsia, a serious obstetric condition. In this study we investigate the difference in the preclinical effectiveness between 100 µM of esomeprazole MH and its hydration isomer, esomeprazole magnesium trihydrate (MTH). Here, we found that both treatments reduced secretion of sFLT-1 (anti-angiogenic factor) from primary cytotrophoblast, but only esomeprazole MH reduced sFLT-1 secretion from primary human umbilical vein endothelial cells (assessed via ELISA). Both drugs could mitigate expression of the endothelial dysfunction markers, vascular cell adhesion molecule-1 and endothelin-1 (via qPCR). Neither esomeprazole MH nor MTH quenched cytotrophoblast reactive oxygen species production in response to sodium azide (ROS assay). Finally, using wire myography, we demonstrated that both compounds were able to induce vasodilation of human omental arteries at 100 µM. Esomeprazole is safe to use in pregnancy and a candidate treatment for preeclampsia. Using primary human tissues and cells, we validated that esomeprazole is effective in enhancing vascular relaxation, and can reduce key factors associated with preeclampsia, including sFLT-1 and endothelial dysfunction. However, esomeprazole MH was more efficacious than esomeprazole MTH in our in vitro studies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: