2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Motor Nerve Arborization Requires Proteolytic Domain of Damage-Induced Neuronal Endopeptidase (DINE) during Development.

  • Sakiko Matsumoto‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2016‎

Damage-induced neuronal endopeptidase (DINE)/endothelin-converting enzyme-like 1 (ECEL1) is a membrane-bound metalloprotease, which we originally identified as a nerve regeneration-associated molecule. Abundant expression of DINE is observed in regenerating neurons, as well as in developing spinal motor neurons. In line with this, DINE-deficient (DINE KO) embryos fail to arborize phrenic motor nerves in the diaphragm and to form proper neuromuscular junctions (NMJ), which lead to death shortly after birth. However, it is unclear whether protease activity of DINE is involved in motor nerve terminal arborization and how DINE participates in the process. To address these issues, we performed an in vivo rescue experiment in which three types of motor-neuron specific DINE transgenic mice were crossed with DINE KO mice. The DINE KO mice, which overexpressed wild-type DINE in motor neurons, succeeded in rescuing the aberrant nerve terminal arborization and lethality after birth, while those overexpressing two types of protease domain-mutated DINE failed. Further histochemical analysis showed abnormal behavior of immature Schwann cells along the DINE-deficient axons. Coculture experiments of motor neurons and Schwann cells ensured that the protease domain of neuronal DINE was required for proper alignment of immature Schwann cells along the axon. These findings suggest that protease activity of DINE is crucial for intramuscular innervation of motor nerves and subsequent NMJ formation, as well as proper control of interactions between axons and immature Schwann cells.


Deep learning-assisted comparative analysis of animal trajectories with DeepHL.

  • Takuya Maekawa‎ et al.
  • Nature communications‎
  • 2020‎

A comparative analysis of animal behavior (e.g., male vs. female groups) has been widely used to elucidate behavior specific to one group since pre-Darwinian times. However, big data generated by new sensing technologies, e.g., GPS, makes it difficult for them to contrast group differences manually. This study introduces DeepHL, a deep learning-assisted platform for the comparative analysis of animal movement data, i.e., trajectories. This software uses a deep neural network based on an attention mechanism to automatically detect segments in trajectories that are characteristic of one group. It then highlights these segments in visualized trajectories, enabling biologists to focus on these segments, and helps them reveal the underlying meaning of the highlighted segments to facilitate formulating new hypotheses. We tested the platform on a variety of trajectories of worms, insects, mice, bears, and seabirds across a scale from millimeters to hundreds of kilometers, revealing new movement features of these animals.


Damage-induced neuronal endopeptidase (DINE) enhances axonal regeneration potential of retinal ganglion cells after optic nerve injury.

  • Aoi Kaneko‎ et al.
  • Cell death & disease‎
  • 2017‎

Damage-induced neuronal endopeptidase (DINE)/endothelin-converting enzyme-like 1 (ECEL1) is a membrane-bound metalloprotease that we identified as a nerve regeneration-associated molecule. The expression of DINE is upregulated in response to nerve injury in both the peripheral and central nervous systems, while its transcription is regulated by the activating transcription factor 3 (ATF3), a potent hub-transcription factor for nerve regeneration. Despite its unique hallmark of injury-induced upregulation, the physiological relevance of DINE in injured neurons has been unclear. In this study, we have demonstrated that the expression of DINE is upregulated in injured retinal ganglion cells (RGCs) in a coordinated manner with that of ATF3 after optic nerve injury, whereas DINE and ATF3 are not observed in any normal retinal cells. Recently, we have generated a mature DINE-deficient (KOTg) mouse, in which exogenous DINE is overexpressed specifically in embryonic motor neurons to avoid aberrant arborization of motor nerves and lethality after birth that occurs in the conventional DINE KO mouse. The DINE KOTg mice did not show any difference in retinal structure and the projection to brain from that of wild-type (wild type) mice under normal conditions. However, injured RGCs of DINE KOTg mice failed to regenerate even after the zymosan treatment, which is a well-known regeneration-promoting reagent. Furthermore, a DINE KOTg mouse crossed with a Atf3:BAC Tg mouse, in which green fluorescent protein (GFP) is visualized specifically in injured RGCs and optic nerves, has verified that DINE deficiency leads to regeneration failure. These findings suggest that injury-induced DINE is a crucial endopeptidase for injured RGCs to promote axonal regeneration after optic nerve injury. Thus, a DINE-mediated proteolytic mechanism would provide us with a new therapeutic strategy for nerve regeneration.


Head direction cells in a migratory bird prefer north.

  • Susumu Takahashi‎ et al.
  • Science advances‎
  • 2022‎

Animals exhibit remarkable navigation abilities as if they have an internal compass. Head direction (HD) cells encoding the animal's heading azimuth are found in the brain of several animal species; the HD cell signals are dependent on the vestibular nuclei, where magnetic responsive cells are present in birds. However, it is difficult to determine whether HD cell signals drive the compass orientation in animals, as they do not necessarily rely on the magnetic compass under all circumstances. Recording of HD cell activities from the medial pallium of shearwater chicks (Calonectris leucomelas) just before their first migration, during which they strongly rely on compass orientation, revealed that shearwater HD cells prefer a north orientation. The preference remained stable regardless of geolocations and environmental cues, suggesting the existence of a magnetic compass regulated by internally generated HD signals. Our findings provide insight into the integration of the direction and magnetoreception senses.


Machine learning enables improved runtime and precision for bio-loggers on seabirds.

  • Joseph Korpela‎ et al.
  • Communications biology‎
  • 2020‎

Unravelling the secrets of wild animals is one of the biggest challenges in ecology, with bio-logging (i.e., the use of animal-borne loggers or bio-loggers) playing a pivotal role in tackling this challenge. Bio-logging allows us to observe many aspects of animals' lives, including their behaviours, physiology, social interactions, and external environment. However, bio-loggers have short runtimes when collecting data from resource-intensive (high-cost) sensors. This study proposes using AI on board video-loggers in order to use low-cost sensors (e.g., accelerometers) to automatically detect and record complex target behaviours that are of interest, reserving their devices' limited resources for just those moments. We demonstrate our method on bio-loggers attached to seabirds including gulls and shearwaters, where it captured target videos with 15 times the precision of a baseline periodic-sampling method. Our work will provide motivation for more widespread adoption of AI in bio-loggers, helping us to shed light onto until now hidden aspects of animals' lives.


Global assessment of marine plastic exposure risk for oceanic birds.

  • Bethany L Clark‎ et al.
  • Nature communications‎
  • 2023‎

Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.


DOPAnization of tyrosine in α-synuclein by tyrosine hydroxylase leads to the formation of oligomers.

  • Mingyue Jin‎ et al.
  • Nature communications‎
  • 2022‎

Parkinson's disease is a progressive neurodegenerative disorder characterized by the preferential loss of tyrosine hydroxylase (TH)-expressing dopaminergic neurons in the substantia nigra. Although the abnormal accumulation and aggregation of α-synuclein have been implicated in the pathogenesis of Parkinson's disease, the underlying mechanisms remain largely elusive. Here, we found that TH converts Tyr136 in α-synuclein into dihydroxyphenylalanine (DOPA; Y136DOPA) through mass spectrometric analysis. Y136DOPA modification was clearly detected by a specific antibody in the dopaminergic neurons of α-synuclein-overexpressing mice as well as human α-synucleinopathies. Furthermore, dopanized α-synuclein tended to form oligomers rather than large fibril aggregates and significantly enhanced neurotoxicity. Our findings suggest that the dopanization of α-synuclein by TH may contribute to oligomer and/or seed formation causing neurodegeneration with the potential to shed light on the pathogenesis of Parkinson's disease.


Expression analysis of the regenerating gene (Reg) family members Reg-IIIβ and Reg-IIIγ in the mouse during development.

  • Sakiko Matsumoto‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

The regenerating gene/regenerating islet-derived (Reg) family is a group of small secretory proteins. Within this family, Reg type-III (Reg-III) consists of: Reg-IIIα, -β, -γ, and -δ. To elucidate the physiological relevance of Reg-III, we examined the localization and ontogeny of Reg-IIIβ and Reg-IIIγ in mice at different time points spanning from embryonic day 13.5 to 7 weeks old, using in situ hybridization and immunohistochemistry. Our results showed that Reg-IIIβ was expressed in specific subsets of primary sensory neurons and motor neurons, and that expression was transient during the embryonic and perinatal periods. Reg-IIIβ expression was also observed in absorptive epithelial cells of the intestine. In contrast, Reg-IIIγ expression was mainly observed in epithelial cells of the airways and intestine, but not in the nervous system, and expression levels showed a gradually increasing pattern along with development. In the airways Reg-IIIγ was expressed in goblet and Clara-like cells, whereas in the intestine Reg-IIIγ was expressed in the absorptive epithelial cells and Paneth cells, and was found to be expressed in development before these organs had been exposed to the outside world. The present findings imply that Reg-IIIβ and Reg-IIIγ expression is regulated along divergent pathways. Furthermore, we also suggest that expression of Reg-IIIγ in the airway and intestinal epithelia may occur to protect these organs from exposure to antigens or other factors (e.g., microbes) in the outer world, whereas the transient expression of Reg-IIIβ in the nervous system may be associated with the development of the peripheral nervous system including such processes as myelination.


Alpha-synuclein facilitates to form short unconventional microtubules that have a unique function in the axonal transport.

  • Shiori Toba‎ et al.
  • Scientific reports‎
  • 2017‎

Although α-synuclein (αSyn) has been linked to Parkinson's disease (PD), the mechanisms underlying the causative role in PD remain unclear. We previously proposed a model for a transportable microtubule (tMT), in which dynein is anchored to a short tMT by LIS1 followed by the kinesin-dependent anterograde transport; however the mechanisms that produce tMTs have not been determined. Our in vitro investigations of microtubule (MT) dynamics revealed that αSyn facilitates the formation of short MTs and preferentially binds to MTs carrying 14 protofilaments (pfs). Live-cell imaging showed that αSyn co-transported with dynein and mobile βIII-tubulin fragments in the anterograde transport. Furthermore, bi-directional axonal transports are severely affected in αSyn and γSyn depleted dorsal root ganglion neurons. SR-PALM analyses further revealed the fibrous co-localization of αSyn, dynein and βIII-tubulin in axons. More importantly, 14-pfs MTs have been found in rat femoral nerve tissue, and they increased approximately 19 fold the control in quantify upon nerve ligation, indicating the unconventional MTs are mobile. Our findings indicate that αSyn facilitates to form short, mobile tMTs that play an important role in the axonal transport. This unexpected and intriguing discovery related to axonal transport provides new insight on the pathogenesis of PD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: