Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Clonal Evolution of Autoreactive Germinal Centers.

  • Søren E Degn‎ et al.
  • Cell‎
  • 2017‎

Germinal centers (GCs) are the primary sites of clonal B cell expansion and affinity maturation, directing the production of high-affinity antibodies. This response is a central driver of pathogenesis in autoimmune diseases, such as systemic lupus erythematosus (SLE), but the natural history of autoreactive GCs remains unclear. Here, we present a novel mouse model where the presence of a single autoreactive B cell clone drives the TLR7-dependent activation, expansion, and differentiation of other autoreactive B cells in spontaneous GCs. Once tolerance was broken for one self-antigen, autoreactive GCs generated B cells targeting other self-antigens. GCs became independent of the initial clone and evolved toward dominance of individual clonal lineages, indicating affinity maturation. This process produced serum autoantibodies to a breadth of self-antigens, leading to antibody deposition in the kidneys. Our data provide insight into the maturation of the self-reactive B cell response, contextualizing the epitope spreading observed in autoimmune disease.


Follicular Dendritic Cells Modulate Germinal Center B Cell Diversity through FcγRIIB.

  • Cees E van der Poel‎ et al.
  • Cell reports‎
  • 2019‎

Follicular dendritic cells (FDCs), a rare and enigmatic stromal cell type in the B cell follicles of secondary lymphoid organs, store and present antigen to B cells. While essential for germinal center (GC) responses, their exact role during GC B cell selection remains unknown. FDCs upregulate the inhibitory IgG Fc receptor FcγRIIB during GC formation. We show that the stromal deficiency of FcγRIIB does not affect GC B cell frequencies compared to wild-type mice. However, in the absence of FcγRIIB on FDCs, GCs show aberrant B cell selection during autoreactive and selective foreign antigen responses. These GCs are more diverse as measured by the AidCreERT2 -confetti system and show the persistence of IgM+ clones with decreased numbers of IgH mutations. Our results show that FDCs can modulate GC B cell diversity by the upregulation of FcγRIIB. Permissive clonal selection and subsequent increased GC diversity may affect epitope spreading during autoimmunity and foreign responses.


Recombinant expression of the autocatalytic complement protease MASP-1 is crucially dependent on co-expression with its inhibitor, C1 inhibitor.

  • Søren E Degn‎ et al.
  • Protein expression and purification‎
  • 2013‎

MASP-1 is a protease of the lectin pathway of complement. It is homologous with MASP-2, previously thought both necessary and sufficient for lectin pathway activation. Recently MASP-1 has taken centre stage with the observation that it is crucial to the activation of MASP-2 and thus central to complement activation. Numerous additional functions have been suggested for MASP-1 and its importance is obvious. Yet, thorough analyses of proteolytic activities and physiological roles in the human scenario have been hampered by difficulties in purifying or producing full-length human MASP-1. We present the successful expression of full-length recombinant human MASP-1 entirely in the zymogen form in a mammalian expression system. We found that the catalytic activity of MASP-1 suppresses its expression through rapid auto-activation and auto-degradation. This auto-degradation was not inhibited by the addition of inhibitors to the culture medium, and it was subsequently found to occur intracellularly. Numerous mutations aimed at attenuating auto-activation or preventing auto-degradation failed to rescue expression, as did also attempts at stabilizing the protease by co-expression with MBL or ficolins or expression in hepatocyte cell lines, representing the natural site of synthesis. The active protease was finally produced through co-expression with the serine protease inhibitor C1 inhibitor. We demonstrate that the expressed protease is capable of binding MBL and auto-activating, and is catalytically active. We have generalized the concept to the expression also of MASP-2 entirely in its zymogen form and with improved yields. We suggest a general advantage of expressing aggressive, autocatalytic proteases with their cognate inhibitors.


Antigen presentation by B cells enables epitope spreading across an MHC barrier.

  • Cecilia Fahlquist-Hagert‎ et al.
  • Nature communications‎
  • 2023‎

Circumstantial evidence suggests that B cells may instruct T cells to break tolerance. Here, to test this hypothesis, we used a murine model in which a single B cell clone precipitates an autoreactive response resembling systemic lupus erythematosus (SLE). The initiating clone did not need to enter germinal centers to precipitate epitope spreading. Rather, it localized to extrafollicular splenic bridging channels early in the response. Autoantibody produced by the initiating clone was not sufficient to drive the autoreactive response. Subsequent epitope spreading depended on antigen presentation and was compartmentalized by major histocompatibility complex (MHC). B cells carrying two MHC haplotypes could bridge the MHC barrier between B cells that did not share MHC. Thus, B cells directly relay autoreactivity between two separate compartments of MHC-restricted T cells, leading to inclusion of distinct B cell populations in germinal centers. Our findings demonstrate that B cells initiate and propagate the autoimmune response.


Disease-causing mutations in genes of the complement system.

  • Søren E Degn‎ et al.
  • American journal of human genetics‎
  • 2011‎

Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of "conventional" complement deficiencies with these newly described developmental roles.


MAp19, the alternative splice product of the MASP2 gene.

  • Søren E Degn‎ et al.
  • Journal of immunological methods‎
  • 2011‎

The lectin pathway of complement is a central part of innate immunity, but as a powerful inducer of inflammation it needs to be tightly controlled. The MASP2 gene encodes two proteins, MASP-2 and MAp19. MASP-2 is the serine protease responsible for lectin pathway activation. The smaller alternative splice product, MAp19, lacks a catalytic domain but retains two of three domains involved in association with the pattern-recognition molecules (PRMs): mannan-binding lectin (MBL), H-ficolin, L-ficolin and M-ficolin. MAp19 reportedly acts as a competitive inhibitor of MASP-2-mediated complement activation. In light of a ten times lower affinity of MAp19, versus MASP-2, for association with the PRMs, much higher serum concentrations of MAp19 than MASP-2 would be required for MAp19 to exert such an inhibitory activity. Just four amino acid residues distinguish MAp19 from MASP-2, and these are conserved between man, mouse and rat. Nonetheless we generated monoclonal rat anti-MAp19 antibodies and established a quantitative assay. We found the concentration of MAp19 in serum to be 217 ng/ml, i.e., 11nM, comparable to the 7 nM of MASP-2. In serum all MASP-2, but only a minor fraction of MAp19, was associated with PRMs. In contrast to previous reports we found that MAp19 could not compete with MASP-2 for binding to MBL, nor could it inhibit MASP-2-mediated complement activation. Immunohistochemical analyses combined with qRT-PCR revealed that both MAp19 and MASP-2 were mainly expressed in hepatocytes. High levels of MAp19 were found in urine, where MASP-2 was absent.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: