Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Down-regulation of multiple cell survival proteins in head and neck cancer cells by an apoptogenic mutant of adenovirus type 5.

  • S Vijayalingam‎ et al.
  • Virology‎
  • 2009‎

Head and neck squamous cell carcinomas (HNSCC) are one of the leading causes of cancer deaths world wide. Up-regulation of the epidermal growth factor receptor (EGFR) and BCL-2 family anti-apoptosis proteins in these cancers is linked to aggressive tumor growth, metastasis and chemoresistance. Infection of two HNSCC cell lines, SCC25 and CAL27 by an Ad5 mutant (lp11w) defective in coding for the viral anti-apoptosis protein, E1B-19K efficiently induced apoptotic cell death. In cells infected with lp11w there was a dramatic down-regulation of EGFR by apoptosis-dependent and -independent mechanisms. The levels of the anti-apoptotic proteins BCL-2, BCL-xL and MCL-1 were also down-regulated in lp11w-infected cells compared to uninfected or Ad5-RM infected cells. Infection with lp11w also enhanced sensitivity of the HNSCC cells to the chemotherapeutic drug cisplatin. Our results suggest that adenoviral vectors defective in E1B-19K would be valuable for efficient down-regulation of cell survival proteins and EGFR in epithelial cancers and could be exploited as oncolytic agents to treat HNSCCs.


CtBP2 proteome: Role of CtBP in E2F7-mediated repression and cell proliferation.

  • Ling-Jun Zhao‎ et al.
  • Genes & cancer‎
  • 2014‎

C-terminal binding protein (CtBP) family transcriptional corepressors include CtBP1 and CtBP2. While CtBP1 and CtBP2 share significant amino acid sequence homology, CtBP2 possesses a unique N-terminal domain that is modified by acetylation and contributes to exclusive nuclear localization. Although CtBP1 and CtBP2 are functionally redundant for certain activities during vertebrate development, they also perform unique functions. Previous studies have identified several CtBP1-interacting proteins that included other transcriptional corepressors, DNA-binding repressors and histone modifying enzymatic components such as the histone deacetylases and the histone demethylase LSD-1. Here, we carried out an unbiased proteomic analysis of CtBP2-associated proteins and discovered the association of several components of the CtBP1 proteome as well as novel interactions. The CtBP2 proteome contained components of the NuRD complex and the E2F family member E2F7. E2F7 interacted with the hydrophobic cleft region of CtBP1 and CtBP2 through a prototypical CtBP binding motif, PIDLS. E2F7 repressed E2F1 transcription, inhibited cell proliferation in a CtBP-dependent fashion. Our study identified CtBP as a corepressor of E2F7 and as a regulator of DNA damage response.


Evaluation of apoptogenic adenovirus type 5 oncolytic vectors in a Syrian hamster head and neck cancer model.

  • S Vijayalingam‎ et al.
  • Cancer gene therapy‎
  • 2014‎

Human adenovirus (HAdV) vectors are intensely investigated for virotherapy of a wide variety of human cancers. Here, we have evaluated the effect of two apoptogenic HAdV5 vectors in an immunocompetent Syrian hamster animal model of head and neck cancer. We established two cell lines of hamster cheek pouch squamous cell carcinomas, induced by treatment with 9,10-dimethyl-1,2-benzanthracene. These cell lines, when infected with HAdV5 mutants lp11w and lp11w/Δ55 K (which are defective in the expression of either E1B-19 K alone or both E1B-19 K and E1B-55 K proteins) exhibited enhanced apoptotic and cytotoxic responses. The cheek pouch tumor cells transplanted either subcutaneously at the flanks or in the cheek pouches of hamsters readily formed tumors. Intratumoral administration of HAdV5-E1B mutants efficiently suppressed the growth of tumors at both sites. Histological examination of orthotopic tumors revealed reduced vascularity and the expression of the viral fiber antigen in virus-administered cheek pouch tumors. These tumors also exhibited increased caspase-3 levels, suggesting that virus-induced apoptosis may contribute to tumor growth suppression. Our results suggest that the apoptogenic HAdV5 vectors may have utility for the treatment of human head and neck cancers.


Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2.

  • Ling-Jun Zhao‎ et al.
  • BMC molecular biology‎
  • 2009‎

Proteins of the C-terminal binding protein (CtBP) family, CtBP1 and CtBP2 are closely related transcriptional regulators that are coded by two different gene loci in the vertebrate genomes. They perform redundant and unique functions during animal development. CtBP proteins mediate their transcriptional function through interaction with various DNA-binding repressors that contain PLDLS-like motifs and chromatin modifying enzymes, such as class I histone deacetylases (HDAC) that do not contain such motifs. The N-terminal region of CtBP1/2 forms a hydrophobic cleft and is involved in interaction with both PLDLS-containing factors and non-PLDLS factors. CtBP proteins function as dimers to mediate transcriptional repression and dimerization is modulated by specific binding to NAD/NADH.


Human iPSC-Derived Neuronal Cells From CTBP1-Mutated Patients Reveal Altered Expression of Neurodevelopmental Gene Networks.

  • S Vijayalingam‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

A recurrent de novo mutation in the transcriptional corepressor CTBP1 is associated with neurodevelopmental disabilities in children (Beck et al., 2016, 2019; Sommerville et al., 2017). All reported patients harbor a single recurrent de novo heterozygous missense mutation (p.R342W) within the cofactor recruitment domain of CtBP1. To investigate the transcriptional activity of the pathogenic CTBP1 mutant allele in physiologically relevant human cell models, we generated induced pluripotent stem cells (iPSC) from the dermal fibroblasts derived from patients and normal donors. The transcriptional profiles of the iPSC-derived "early" neurons were determined by RNA-sequencing. Comparison of the RNA-seq data of the neurons from patients and normal donors revealed down regulation of gene networks involved in neurodevelopment, synaptic adhesion and anti-viral (interferon) response. Consistent with the altered gene expression patterns, the patient-derived neurons exhibited morphological and electrophysiological abnormalities, and susceptibility to viral infection. Taken together, our studies using iPSC-derived neuron models provide novel insights into the pathological activities of the CTBP1 p.R342W allele.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: