Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Regulation of Ribosome Biogenesis and Protein Synthesis Controls Germline Stem Cell Differentiation.

  • Carlos G Sanchez‎ et al.
  • Cell stem cell‎
  • 2016‎

Complex regulatory networks regulate stem cell behavior and contributions to tissue growth, repair, and homeostasis. A full understanding of the networks controlling stem cell self-renewal and differentiation, however, has not yet been realized. To systematically dissect these networks and identify their components, we performed an unbiased, transcriptome-wide in vivo RNAi screen in female Drosophila germline stem cells (GSCs). Based on characterized cellular defects, we classified 646 identified genes into phenotypic and functional groups and unveiled a comprehensive set of networks regulating GSC maintenance, survival, and differentiation. This analysis revealed an unexpected role for ribosomal assembly factors in controlling stem cell cytokinesis. Moreover, our data show that the transition from self-renewal to differentiation relies on enhanced ribosome biogenesis accompanied by increased protein synthesis. Collectively, these results detail the extensive genetic networks that control stem cell homeostasis and highlight the intricate regulation of protein synthesis during differentiation.


Curly Encodes Dual Oxidase, Which Acts with Heme Peroxidase Curly Su to Shape the Adult Drosophila Wing.

  • Thomas Ryan Hurd‎ et al.
  • PLoS genetics‎
  • 2015‎

Curly, described almost a century ago, is one of the most frequently used markers in Drosophila genetics. Despite this the molecular identity of Curly has remained obscure. Here we show that Curly mutations arise in the gene dual oxidase (duox), which encodes a reactive oxygen species (ROS) generating NADPH oxidase. Using Curly mutations and RNA interference (RNAi), we demonstrate that Duox autonomously stabilizes the wing on the last day of pupal development. Through genetic suppression studies, we identify a novel heme peroxidase, Curly Su (Cysu) that acts with Duox to form the wing. Ultrastructural analysis suggests that Duox and Cysu are required in the wing to bond and adhere the dorsal and ventral cuticle surfaces during its maturation. In Drosophila, Duox is best known for its role in the killing of pathogens by generating bactericidal ROS. Our work adds to a growing number of studies suggesting that Duox's primary function is more structural, helping to form extracellular and cuticle structures in conjunction with peroxidases.


Whole genome screen reveals a novel relationship between Wolbachia levels and Drosophila host translation.

  • Yolande Grobler‎ et al.
  • PLoS pathogens‎
  • 2018‎

Wolbachia is an intracellular bacterium that infects a remarkable range of insect hosts. Insects such as mosquitos act as vectors for many devastating human viruses such as Dengue, West Nile, and Zika. Remarkably, Wolbachia infection provides insect hosts with resistance to many arboviruses thereby rendering the insects ineffective as vectors. To utilize Wolbachia effectively as a tool against vector-borne viruses a better understanding of the host-Wolbachia relationship is needed. To investigate Wolbachia-insect interactions we used the Wolbachia/Drosophila model that provides a genetically tractable system for studying host-pathogen interactions. We coupled genome-wide RNAi screening with a novel high-throughput fluorescence in situ hybridization (FISH) assay to detect changes in Wolbachia levels in a Wolbachia-infected Drosophila cell line JW18. 1117 genes altered Wolbachia levels when knocked down by RNAi of which 329 genes increased and 788 genes decreased the level of Wolbachia. Validation of hits included in depth secondary screening using in vitro RNAi, Drosophila mutants, and Wolbachia-detection by DNA qPCR. A diverse set of host gene networks was identified to regulate Wolbachia levels and unexpectedly revealed that perturbations of host translation components such as the ribosome and translation initiation factors results in increased Wolbachia levels both in vitro using RNAi and in vivo using mutants and a chemical-based translation inhibition assay. This work provides evidence for Wolbachia-host translation interaction and strengthens our general understanding of the Wolbachia-host intracellular relationship.


Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline.

  • Toby Lieber‎ et al.
  • Nature‎
  • 2019‎

Mitochondria contain their own genomes that, unlike nuclear genomes, are inherited only in the maternal line. Owing to a high mutation rate and low levels of recombination of mitrochondrial DNA (mtDNA), special selection mechanisms exist in the female germline to prevent the accumulation of deleterious mutations1-5. However, the molecular mechanisms that underpin selection are poorly understood6. Here we visualize germline selection in Drosophila using an allele-specific fluorescent in situ-hybridization approach to distinguish wild-type from mutant mtDNA. Selection first manifests in the early stages of Drosophila oogenesis, triggered by reduction of the pro-fusion protein Mitofusin. This leads to the physical separation of mitochondrial genomes into different mitochondrial fragments, which prevents the mixing of genomes and their products and thereby reduces complementation. Once fragmented, mitochondria that contain mutant genomes are less able to produce ATP, which marks them for selection through a process that requires the mitophagy proteins Atg1 and BNIP3. A reduction in Atg1 or BNIP3 decreases the amount of wild-type mtDNA, which suggests a link between mitochondrial turnover and mtDNA replication. Fragmentation is not only necessary for selection in germline tissues, but is also sufficient to induce selection in somatic tissues in which selection is normally absent. We postulate that there is a generalizable mechanism for selection against deleterious mtDNA mutations, which may enable the development of strategies for the treatment of mtDNA disorders.


HP6/Umbrea is dispensable for viability and fertility, suggesting essentiality of newly evolved genes is rare.

  • Sherilyn Grill‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

The newly evolved gene Heterochromatin Protein 6 (HP6), which has been previously classified as essential, challenged the dogma that functions required for viability are only seen in genes with a long evolutionary history. Based on previous RNA-sequencing analysis in Drosophila germ cells, we asked whether HP6 might play a role in germline development. Surprisingly, we found that CRISPR-generated HP6 mutants are viable and fertile. Using previously generated mutants, we identified an independent lethal allele and an RNAi off-target effect that prevented accurate interpretation of HP6 essentiality. By reviewing existing data, we found that the vast majority of young genes that were previously classified as essential were indeed viable when tested with orthologous methods. Together, our data call into question the frequency with which newly evolved genes gain essential functions and suggest that using multiple independent genetic methods is essential when probing the functions of young genes.


Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila.

  • Andrea L Zamparini‎ et al.
  • Development (Cambridge, England)‎
  • 2011‎

In Drosophila, Piwi proteins associate with Piwi-interacting RNAs (piRNAs) and protect the germline genome by silencing mobile genetic elements. This defense system acts in germline and gonadal somatic tissue to preserve germline development. Genetic control for these silencing pathways varies greatly between tissues of the gonad. Here, we identified Vreteno (Vret), a novel gonad-specific protein essential for germline development. Vret is required for piRNA-based transposon regulation in both germline and somatic gonadal tissues. We show that Vret, which contains Tudor domains, associates physically with Piwi and Aubergine (Aub), stabilizing these proteins via a gonad-specific mechanism that is absent in other fly tissues. In the absence of vret, Piwi-bound piRNAs are lost without changes in piRNA precursor transcript production, supporting a role for Vret in primary piRNA biogenesis. In the germline, piRNAs can engage in an Aub- and Argonaute 3 (AGO3)-dependent amplification in the absence of Vret, suggesting that Vret function can distinguish between primary piRNAs loaded into Piwi-Aub complexes and piRNAs engaged in the amplification cycle. We propose that Vret plays an essential role in transposon regulation at an early stage of primary piRNA processing.


Phase transitioned nuclear Oskar promotes cell division of Drosophila primordial germ cells.

  • Kathryn E Kistler‎ et al.
  • eLife‎
  • 2018‎

Germ granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the Drosophila embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar's nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.


L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary.

  • Rémi-Xavier Coux‎ et al.
  • Development (Cambridge, England)‎
  • 2018‎

Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt has been shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here, we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues. l(3)mbt mutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene, nanos, a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. At the molecular level, we show that L(3)mbt function in the ovary is mediated through its co-factor Lint-1 but independently of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures.


Egalitarian binds dynein light chain to establish oocyte polarity and maintain oocyte fate.

  • Caryn Navarro‎ et al.
  • Nature cell biology‎
  • 2004‎

In many cell types polarized transport directs the movement of mRNAs and proteins from their site of synthesis to their site of action, thus conferring cell polarity. The cytoplasmic dynein microtubule motor complex is involved in this process. In Drosophila melanogaster, the Egalitarian (Egl) and Bicaudal-D (BicD) proteins are also essential for the transport of macromolecules to the oocyte and to the apical surface of the blastoderm embryo. Hence, Egl and BicD, which have been shown to associate, may be part of a conserved core localization machinery in Drosophila, although a direct association between these molecules and the dynein motor complex has not been shown. Here we report that Egl interacts directly with Drosophila dynein light chain (Dlc), a microtubule motor component, through an Egl domain distinct from that which binds BicD. We propose that the Egl-BicD complex is loaded through Dlc onto the dynein motor complex thereby facilitating transport of cargo. Consistent with this model, point mutations that specifically disrupt Egl-Dlc association also disrupt microtubule-dependant trafficking both to and within the oocyte, resulting in a loss of oocyte fate maintenance and polarity. Our data provide a direct link between a molecule necessary for oocyte specification and the microtubule motor complex, and supports the hypothesis that microtubule-mediated transport is important for preserving oocyte fate.


Repression of primordial germ cell differentiation parallels germ line stem cell maintenance.

  • Lilach Gilboa‎ et al.
  • Current biology : CB‎
  • 2004‎

In Drosophila, primordial germ cells (PGCs) are set aside from somatic cells and subsequently migrate through the embryo and associate with somatic gonadal cells to form the embryonic gonad. During larval stages, PGCs proliferate in the female gonad, and a subset of PGCs are selected at late larval stages to become germ line stem cells (GSCs), the source of continuous egg production throughout adulthood. However, the degree of similarity between PGCs and the self-renewing GSCs is unclear. Here we show that many of the genes that are required for GSC maintenance in adults are also required to prevent precocious differentiation of PGCs within the larval ovary. We show that following overexpression of the GSC-differentiation gene bag of marbles (bam), PGCs differentiate to form cysts without becoming GSCs. Furthermore, PGCs that are mutant for nanos (nos), pumilio (pum) or for signaling components of the decapentaplegic (dpp) pathway also differentiate. The similarity in the genes necessary for GSC maintenance and the repression of PGC differentiation suggest that PGCs and GSCs may be functionally equivalent and that the larval gonad functions as a "PGC niche".


Control of lateral migration and germ cell elimination by the Drosophila melanogaster lipid phosphate phosphatases Wunen and Wunen 2.

  • Hiroko Sano‎ et al.
  • The Journal of cell biology‎
  • 2005‎

In most organisms, primordial germ cells (PGCs) arise far from the region where somatic gonadal precursors (SGPs) are specified. Although PGCs in general originate as a single cluster of cells, the somatic parts of the gonad form on each site of the embryo. Thus, to reach the gonad, PGCs not only migrate from their site of origin but also split into two groups. Taking advantage of high-resolution real-time imaging, we show that in Drosophila melanogaster PGCs are polarized and migrate directionally toward the SGPs, avoiding the midline. Unexpectedly, neither PGC attractants synthesized in the SGPs nor known midline repellents for axon guidance were required to sort PGCs bilaterally. Repellent activity provided by wunen (wun) and wunen-2 (wun-2) expressed in the central nervous system, however, is essential in this migration process and controls PGC survival. Our results suggest that expression of wun/wun-2 repellents along the migratory paths provides faithful control over the sorting of PGCs into two gonads and eliminates PGCs left in the middle of the embryo.


Quantitative Differences in a Single Maternal Factor Determine Survival Probabilities among Drosophila Germ Cells.

  • Maija Slaidina‎ et al.
  • Current biology : CB‎
  • 2017‎

Germ cell death occurs in many species [1-3] and has been proposed as a mechanism by which the fittest, strongest, or least damaged germ cells are selected for transmission to the next generation. However, little is known about how the choice is made between germ cell survival and death. Here, we focus on the mechanisms that regulate germ cell survival during embryonic development in Drosophila. We find that the decision to die is a germ cell-intrinsic process linked to quantitative differences in germ plasm inheritance, such that higher germ plasm inheritance correlates with higher primordial germ cell (PGC) survival probability. We demonstrate that the maternal factor lipid phosphate phosphatase Wunen-2 (Wun2) regulates PGC survival in a dose-dependent manner. Since wun2 mRNA levels correlate with the levels of other maternal determinants at the single-cell level, we propose that Wun2 is used as a readout of the overall germ plasm quantity, such that only PGCs with the highest germ plasm quantity survive. Furthermore, we demonstrate that Wun2 and p53, another regulator of PGC survival, have opposite yet independent effects on PGC survival. Since p53 regulates cell death upon DNA damage and various cellular stresses, we hypothesize that together they ensure selection of the PGCs with highest germ plasm quantity and least cellular damage.


A transitory signaling center controls timing of primordial germ cell differentiation.

  • Torsten U Banisch‎ et al.
  • Developmental cell‎
  • 2021‎

Organogenesis requires exquisite spatiotemporal coordination of cell morphogenesis, migration, proliferation, and differentiation of multiple cell types. For gonads, this involves complex interactions between somatic and germline tissues. During Drosophila ovary morphogenesis, primordial germ cells (PGCs) either are sequestered in stem cell niches and are maintained in an undifferentiated germline stem cell state or transition directly toward differentiation. Here, we identify a mechanism that links hormonal triggers of somatic tissue morphogenesis with PGC differentiation. An early ecdysone pulse initiates somatic swarm cell (SwC) migration, positioning these cells close to PGCs. A second hormone peak activates Torso-like signal in SwCs, which stimulates the Torso receptor tyrosine kinase (RTK) signaling pathway in PGCs promoting their differentiation by de-repression of the differentiation gene, bag of marbles. Thus, systemic temporal cues generate a transitory signaling center that coordinates ovarian morphogenesis with stem cell self-renewal and differentiation programs, highlighting a more general role for such centers in reproductive and developmental biology.


A germline-specific gap junction protein required for survival of differentiating early germ cells.

  • Salli I Tazuke‎ et al.
  • Development (Cambridge, England)‎
  • 2002‎

Germ cells require intimate associations and signals from the surrounding somatic cells throughout gametogenesis. The zero population growth (zpg) locus of Drosophila encodes a germline-specific gap junction protein, Innexin 4, that is required for survival of differentiating early germ cells during gametogenesis in both sexes. Animals with a null mutation in zpg are viable but sterile and have tiny gonads. Adult zpg-null gonads contain small numbers of early germ cells, resembling stem cells or early spermatogonia or oogonia, but lack later stages of germ cell differentiation. In the male, Zpg protein localizes to the surface of spermatogonia, primarily on the sides adjacent to the somatic cyst cells. In the female, Zpg protein localizes to germ cell surfaces, both those adjacent to surrounding somatic cells and those adjacent to other germ cells. We propose that Zpg-containing gap junctional hemichannels in the germ cell plasma membrane may connect with hemichannels made of other innexin isoforms on adjacent somatic cells. Gap junctional intercellular communication via these channels may mediate passage of crucial small molecules or signals between germline and somatic support cells required for survival and differentiation of early germ cells in both sexes.


Lifespan extension by preserving proliferative homeostasis in Drosophila.

  • Benoît Biteau‎ et al.
  • PLoS genetics‎
  • 2010‎

Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.


The Drosophila actin regulator ENABLED regulates cell shape and orientation during gonad morphogenesis.

  • Hiroko Sano‎ et al.
  • PloS one‎
  • 2012‎

Organs develop distinctive morphologies to fulfill their unique functions. We used Drosophila embryonic gonads as a model to study how two different cell lineages, primordial germ cells (PGCs) and somatic gonadal precursors (SGPs), combine to form one organ. We developed a membrane GFP marker to image SGP behaviors live. These studies show that a combination of SGP cell shape changes and inward movement of anterior and posterior SGPs leads to the compaction of the spherical gonad. This process is disrupted in mutants of the actin regulator, enabled (ena). We show that Ena coordinates these cell shape changes and the inward movement of the SGPs, and Ena affects the intracellular localization of DE-cadherin (DE-cad). Mathematical simulation based on these observations suggests that changes in DE-cad localization can generate the forces needed to compact an elongated structure into a sphere. We propose that Ena regulates force balance in the SGPs by sequestering DE-cad, leading to the morphogenetic movement required for gonad compaction.


piRNA-mediated regulation of transposon alternative splicing in the soma and germ line.

  • Felipe Karam Teixeira‎ et al.
  • Nature‎
  • 2017‎

Transposable elements can drive genome evolution, but their enhanced activity is detrimental to the host and therefore must be tightly regulated. The Piwi-interacting small RNA (piRNA) pathway is vital for the regulation of transposable elements, by inducing transcriptional silencing or post-transcriptional decay of mRNAs. Here we show that piRNAs and piRNA biogenesis components regulate precursor mRNA splicing of P-transposable element transcripts in vivo, leading to the production of the non-transposase-encoding mature mRNA isoform in Drosophila germ cells. Unexpectedly, we show that the piRNA pathway components do not act to reduce transcript levels of the P-element transposon during P-M hybrid dysgenesis, a syndrome that affects germline development in Drosophila. Instead, splicing regulation is mechanistically achieved together with piRNA-mediated changes to repressive chromatin states, and relies on the function of the Piwi-piRNA complex proteins Asterix (also known as Gtsf1) and Panoramix (Silencio), as well as Heterochromatin protein 1a (HP1a; encoded by Su(var)205). Furthermore, we show that this machinery, together with the piRNA Flamenco cluster, not only controls the accumulation of Gypsy retrotransposon transcripts but also regulates the splicing of Gypsy mRNAs in cultured ovarian somatic cells, a process required for the production of infectious particles that can lead to heritable transposition events. Our findings identify splicing regulation as a new role and essential function for the Piwi pathway in protecting the genome against transposon mobility, and provide a model system for studying the role of chromatin structure in modulating alternative splicing during development.


Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells.

  • Prabhat S Kunwar‎ et al.
  • PLoS biology‎
  • 2003‎

In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.


Human organoids: a new dimension in cell biology.

  • Ruth Lehmann‎ et al.
  • Molecular biology of the cell‎
  • 2019‎

Organoids derived from stem cells or tissues in culture can develop into structures that resemble the in vivo anatomy and physiology of intact organs. Human organoid cultures provide the potential to study human development and model disease processes with the same scrutiny and depth of analysis customary for research with nonhuman model organisms. Resembling the complexity of the actual tissue or organ, patient-derived human organoid studies may accelerate medical research, creating new opportunities for tissue engineering and regenerative medicine, generating knowledge and tools for preclinical studies, including drug development and testing. Biologists are drawn to this system as a new "model organism" to study complex disease phenotypes and genetic variability among individuals using patient-derived tissues. The American Society for Cell Biology convened a task force to report on the potential, challenges, and limitations for human organoid research. The task force suggests ways to ease the entry for new researchers into the field and how to facilitate broader use of this new model organism within the research community. This includes guidelines for reproducibility, culturing, sharing of patient materials, patient consent, training, and communication with the public.


A single-cell atlas of the developing Drosophila ovary identifies follicle stem cell progenitors.

  • Maija Slaidina‎ et al.
  • Genes & development‎
  • 2020‎

Addressing the complexity of organogenesis at a system-wide level requires a complete understanding of adult cell types, their origin, and precursor relationships. The Drosophila ovary has been a model to study how coordinated stem cell units, germline, and somatic follicle stem cells maintain and renew an organ. However, lack of cell type-specific tools have limited our ability to study the origin of individual cell types and stem cell units. Here, we used a single-cell RNA sequencing approach to uncover all known cell types of the developing ovary, reveal transcriptional signatures, and identify cell type-specific markers for lineage tracing. Our study identifies a novel cell type corresponding to the elusive follicle stem cell precursors and predicts subtypes of known cell types. Altogether, we reveal a previously unanticipated complexity of the developing ovary and provide a comprehensive resource for the systematic analysis of ovary morphogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: