Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres.

  • Zhouliang Yu‎ et al.
  • Developmental cell‎
  • 2015‎

The H3 histone variant CENP-A is an epigenetic marker critical for the centromere identity and function. However, the precise regulation of the spatiotemporal deposition and propagation of CENP-A at centromeres during the cell cycle is still poorly understood. Here, we show that CENP-A is phosphorylated at Ser68 during early mitosis by Cdk1. Our results demonstrate that phosphorylation of Ser68 eliminates the binding of CENP-A to the assembly factor HJURP, thus preventing the premature loading of CENP-A to the centromere prior to mitotic exit. Because Cdk1 activity is at its minimum at the mitotic exit, the ratio of Cdk1/PP1α activity changes in favor of Ser68 dephosphorylation, thus making CENP-A available for centromeric deposition by HJURP. Thus, we reveal that dynamic phosphorylation of CENP-A Ser68 orchestrates the spatiotemporal assembly of newly synthesized CENP-A at active centromeres during the cell cycle.


Hat2p recognizes the histone H3 tail to specify the acetylation of the newly synthesized H3/H4 heterodimer by the Hat1p/Hat2p complex.

  • Yang Li‎ et al.
  • Genes & development‎
  • 2014‎

Post-translational modifications of histones are significant regulators of replication, transcription, and DNA repair. Particularly, newly synthesized histone H4 in H3/H4 heterodimers becomes acetylated on N-terminal lysine residues prior to its incorporation into chromatin. Previous studies have established that the histone acetyltransferase (HAT) complex Hat1p/Hat2p medicates this modification. However, the mechanism of how Hat1p/Hat2p recognizes and facilitates the enzymatic activities on the newly assembled H3/H4 heterodimer remains unknown. Furthermore, Hat2p is a WD40 repeat protein, which is found in many histone modifier complexes. However, how the WD40 repeat proteins facilitate enzymatic activities of histone modification enzymes is unclear. In this study, we first solved the high-resolution crystal structure of a Hat1p/Hat2p/CoA/H4 peptide complex and found that the H4 tail interacts with both Hat1p and Hat2p, by which substrate recruitment is facilitated. We further discovered that H3 N-terminal peptides can bind to the Hat2p WD40 domain and solved the structure of the Hat1p/Hat2p/CoA/H4/H3 peptide complex. Moreover, the interaction with Hat2p requires unmodified Arg2/Lys4 and Lys9 on the H3 tail, suggesting a novel model to specify the activity of Hat1p/Hat2p toward newly synthesized H3/H4 heterodimers. Together, our study demonstrated the substrate recognition mechanism by the Hat1p/Hat2p complex, which is critical for DNA replication and other chromatin remodeling processes.


Structural basis for snRNA recognition by the double-WD40 repeat domain of Gemin5.

  • Wenxing Jin‎ et al.
  • Genes & development‎
  • 2016‎

Assembly of the spliceosomal small nuclear ribonucleoparticle (snRNP) core requires the participation of the multisubunit SMN (survival of motor neuron) complex, which contains SMN and several Gemin proteins. The SMN and Gemin2 subunits directly bind Sm proteins, and Gemin5 is required for snRNP biogenesis and has been implicated in snRNA recognition. The RNA sequence required for snRNP assembly includes the Sm site and an adjacent 3' stem-loop, but a precise understanding of Gemin5's RNA-binding specificity is lacking. Here we show that the N-terminal half of Gemin5, which is composed of two juxtaposed seven-bladed WD40 repeat domains, recognizes the Sm site. The tandem WD40 repeat domains are rigidly held together to form a contiguous RNA-binding surface. RNA-contacting residues are located mostly on loops between β strands on the apical surface of the WD40 domains. Structural and biochemical analyses show that base-stacking interactions involving four aromatic residues and hydrogen bonding by a pair of arginines are crucial for specific recognition of the Sm sequence. We also show that an adenine immediately 5' to the Sm site is required for efficient binding and that Gemin5 can bind short RNA oligos in an alternative mode. Our results provide mechanistic understandings of Gemin5's snRNA-binding specificity as well as valuable insights into the molecular mechanism of RNA binding by WD40 repeat proteins in general.


Human cytomegalovirus IE1 protein alters the higher-order chromatin structure by targeting the acidic patch of the nucleosome.

  • Qianglin Fang‎ et al.
  • eLife‎
  • 2016‎

Human cytomegalovirus (hCMV) immediate early 1 (IE1) protein associates with condensed chromatin of the host cell during mitosis. We have determined the structure of the chromatin-tethering domain (CTD) of IE1 bound to the nucleosome core particle, and discovered that IE1-CTD specifically interacts with the H2A-H2B acidic patch and impairs the compaction of higher-order chromatin structure. Our results suggest that IE1 loosens up the folding of host chromatin during hCMV infections.


UBN1/2 of HIRA complex is responsible for recognition and deposition of H3.3 at cis-regulatory elements of genes in mouse ES cells.

  • Chaoyang Xiong‎ et al.
  • BMC biology‎
  • 2018‎

H3.3 is an ancient and conserved H3 variant and plays essential roles in transcriptional regulation. HIRA complex, which is composed of HIRA, UBN1 or UBN2, and Cabin1, is a H3.3 specific chaperone complex. However, it still remains largely uncharacterized how HIRA complex specifically recognizes and deposits H3.3 to the chromatin, such as promoters and enhancers.


Bioactive Benzofuran Derivatives from Cortex Mori Radicis, and Their Neuroprotective and Analgesic Activities Mediated by mGluR₁.

  • Ya-Nan Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

Four new benzofuran-type stilbene glycosides and 14 known compounds including 8 benzofuran-type stilbenes and 6 flavonoids were isolated from the traditional Chinese medicine, Cortex Mori Radicis. The new compounds were identified as (9R)-moracin P 3'-O-α-l-arabinopyranoside (1), (9R)-moracin P 9-O-β-d-glucopyranoside (2), (9R)-moracin P 3'-O-β-d-glucopyranoside (3), and (9R)-moracin O 10-O-β-d-glucopyranoside (4) based on the spectroscopic interpretation and chemical analysis. Three benzofuran-type stilbenes, moracin O (5), R (7), and P (8) showed significant neuroprotective activity against glutamate-induced cell death in SK-N-SH cells. In addition, moracin O (5) and P (8) also demonstrated a remarkable inhibition of the acetic acid-induced pain. The molecular docking with metabotropic glutamate receptor 1 (mGluR₁) results indicated that these neuroprotective benzofuran-type stilbenes might be the active analgesic components of the genus Morus, and acted by mediating the mGluR₁ pathway.


Acetylation of histone H3K27 signals the transcriptional elongation for estrogen receptor alpha.

  • Yujing Gao‎ et al.
  • Communications biology‎
  • 2020‎

As approximately 70% of human breast tumors are estrogen receptor α (ERα)-positive, estrogen and ERα play essential roles in breast cancer development. By interrupting the ERα signaling pathway, endocrine therapy has been proven to be an effective therapeutic strategy. In this study, we identified a mechanism by which Transcription Start Site (TSS)-associated histone H3K27 acetylation signals the Super Elongation Complex (SEC) to regulate transcriptional elongation of the ESR1 (ERα) gene. SEC interacts with H3K27ac on ESR1 TSS through its scaffold protein AFF4. Depletion of AFF4 by siRNA or CRISPR/Cas9 dramatically reduces expression of ESR1 and its target genes, consequently inhibiting breast cancer cell growth. More importantly, a AFF4 mutant which lacks H3K27ac interaction failed to rescue ESR1 gene expression, suggesting H3K27 acetylation at TSS region is a key mark bridging the transition from transcriptional initiation to elongation, and perturbing SEC function can be an alternative strategy for targeting ERα signaling pathway at chromatin level.


Structural Basis for pri-miRNA Recognition by Drosha.

  • Wenxing Jin‎ et al.
  • Molecular cell‎
  • 2020‎

A commencing and critical step in miRNA biogenesis involves processing of pri-miRNAs in the nucleus by Microprocessor. An important, but not completely understood, question is how Drosha, the catalytic subunit of Microprocessor, binds pri-miRNAs and correctly specifies cleavage sites. Here we report the cryoelectron microscopy structures of the Drosha-DGCR8 complex with and without a pri-miRNA. The RNA-bound structure provides direct visualization of the tertiary structure of pri-miRNA and shows that a helix hairpin in the extended PAZ domain and the mobile basic (MB) helix in the RNase IIIa domain of Drosha coordinate to recognize the single-stranded to double-stranded junction of RNA, whereas the dsRNA binding domain makes extensive contacts with the RNA stem. Furthermore, the RNA-free structure reveals an autoinhibitory conformation of the PAZ helix hairpin. These findings provide mechanistic insights into pri-miRNA cleavage site selection and conformational dynamics governing pri-miRNA recognition by the catalytic component of Microprocessor.


DNA polymerase α interacts with H3-H4 and facilitates the transfer of parental histones to lagging strands.

  • Zhiming Li‎ et al.
  • Science advances‎
  • 2020‎

How parental histones, the carriers of epigenetic modifications, are deposited onto replicating DNA remains poorly understood. Here, we describe the eSPAN method (enrichment and sequencing of protein-associated nascent DNA) in mouse embryonic stem (ES) cells and use it to detect histone deposition onto replicating DNA strands with a relatively small number of cells. We show that DNA polymerase α (Pol α), which synthesizes short primers for DNA synthesis, binds histone H3-H4 preferentially. A Pol α mutant defective in histone binding in vitro impairs the transfer of parental H3-H4 to lagging strands in both yeast and mouse ES cells. Last, dysregulation of both coding genes and noncoding endogenous retroviruses is detected in mutant ES cells defective in parental histone transfer. Together, we report an efficient eSPAN method for analysis of DNA replication-linked processes in mouse ES cells and reveal the mechanism of Pol α in parental histone transfer.


Distinct histone H3-H4 binding modes of sNASP reveal the basis for cooperation and competition of histone chaperones.

  • Chao-Pei Liu‎ et al.
  • Genes & development‎
  • 2021‎

Chromosomal duplication requires de novo assembly of nucleosomes from newly synthesized histones, and the process involves a dynamic network of interactions between histones and histone chaperones. sNASP and ASF1 are two major histone H3-H4 chaperones found in distinct and common complexes, yet how sNASP binds H3-H4 in the presence and absence of ASF1 remains unclear. Here we show that, in the presence of ASF1, sNASP principally recognizes a partially unfolded Nα region of histone H3, and in the absence of ASF1, an additional sNASP binding site becomes available in the core domain of the H3-H4 complex. Our study also implicates a critical role of the C-terminal tail of H4 in the transfer of H3-H4 between sNASP and ASF1 and the coiled-coil domain of sNASP in nucleosome assembly. These findings provide mechanistic insights into coordinated histone binding and transfer by histone chaperones.


Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol.

  • Duanfang Cao‎ et al.
  • Genes & development‎
  • 2015‎

Sirtuins with an extended N-terminal domain (NTD), represented by yeast Sir2 and human SIRT1, harbor intrinsic mechanisms for regulation of their NAD-dependent deacetylase activities. Elucidation of the regulatory mechanisms is crucial for understanding the biological functions of sirtuins and development of potential therapeutics. In particular, SIRT1 has emerged as an attractive therapeutic target, and the search for SIRT1-activating compounds (STACs) has been actively pursued. However, the effectiveness of a class of reported STACs (represented by resveratrol) as direct SIRT1 activators is under debate due to the complication involving the use of fluorogenic substrates in in vitro assays. Future efforts of SIRT1-based therapeutics necessitate the dissection of the molecular mechanism of SIRT1 stimulation. We solved the structure of SIRT1 in complex with resveratrol and a 7-amino-4-methylcoumarin (AMC)-containing peptide. The structure reveals the presence of three resveratrol molecules, two of which mediate the interaction between the AMC peptide and the NTD of SIRT1. The two NTD-bound resveratrol molecules are principally responsible for promoting tighter binding between SIRT1 and the peptide and the stimulation of SIRT1 activity. The structural information provides valuable insights into regulation of SIRT1 activity and should benefit the development of authentic SIRT1 activators.


Structural transitions of centromeric chromatin regulate the cell cycle-dependent recruitment of CENP-N.

  • Junnan Fang‎ et al.
  • Genes & development‎
  • 2015‎

Specific recognition of centromere-specific histone variant CENP-A-containing chromatin by CENP-N is an essential process in the assembly of the kinetochore complex at centromeres prior to mammalian cell division. However, the mechanisms of CENP-N recruitment to centromeres/kinetochores remain unknown. Here, we show that a CENP-A-specific RG loop (Arg80/Gly81) plays an essential and dual regulatory role in this process. The RG loop assists the formation of a compact "ladder-like" structure of CENP-A chromatin, concealing the loop and thus impairing its role in recruiting CENP-N. Upon G1/S-phase transition, however, centromeric chromatin switches from the compact to an open state, enabling the now exposed RG loop to recruit CENP-N prior to cell division. Our results provide the first insights into the mechanisms by which the recruitment of CENP-N is regulated by the structural transitions between compaction and relaxation of centromeric chromatin during the cell cycle.


The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate.

  • Yan Li‎ et al.
  • The Journal of biological chemistry‎
  • 2009‎

The NSD (nuclear receptor SET domain-containing) family of histone lysine methyltransferases is a critical participant in chromatin integrity as evidenced by the number of human diseases associated with the aberrant expression of its family members. Yet, the specific targets of these enzymes are not clear, with marked discrepancies being reported in the literature. We demonstrate that NSD2 can exhibit disparate target preferences based on the nature of the substrate provided. The NSD2 complex purified from human cells and recombinant NSD2 both exhibit specific targeting of histone H3 lysine 36 (H3K36) when provided with nucleosome substrates, but histone H4 lysine 44 is the primary target in the case of octamer substrates, irrespective of the histones being native or recombinant. This disparity is negated when NSD2 is presented with octamer targets in conjunction with short single- or double-stranded DNA. Although the octamers cannot form nucleosomes, the target is nonetheless nucleosome-specific as is the product, dimethylated H3K36. This study clarifies in part the previous discrepancies reported with respect to NSD targets. We propose that DNA acts as an allosteric effector of NSD2 such that H3K36 becomes the preferred target.


Structure of Zeste-DNA Complex Reveals a New Modality of DNA Recognition by Homeodomain-Like Proteins.

  • Guan-Nan Gao‎ et al.
  • Journal of molecular biology‎
  • 2015‎

Drosophila Zeste is a DNA binding protein important for chromatin-targeted regulation of gene expression. It is best studied in the context of transvection-a mechanism of interallelic gene regulation involving paired chromosomes-and repression of the expression of white by Zeste mutants. Both of these functions depend on the DNA binding and self-association properties of Zeste, but the underlying structural basis remains unknown. Here we report the crystal structure of the DNA binding domain of Zeste in complex with a 19-bp DNA duplex containing the consensus recognition sequence motif. The structure reveals a helix-turn-helix Myb/homeodomain-like fold with the Zeste-specific insertion sequence forming a short helix and a long loop. Direct base contacts by the major groove binding helix principally account for the sequence-specific recognition, and backbone contacts via the Zeste-specific insertion are mainly responsible for the length requirement and the orientation of DNA. Our structural and biochemical characterizations of the DNA binding property of Zeste uncover an altered DNA binding modality of homeodomain-like proteins, and the structural information should facilitate the unraveling of the intricate mechanism of Zeste in regulation of gene expression.


Structure specific DNA recognition by the SLX1-SLX4 endonuclease complex.

  • Xiang Xu‎ et al.
  • Nucleic acids research‎
  • 2021‎

The SLX1-SLX4 structure-specific endonuclease complex is involved in processing diverse DNA damage intermediates, including resolution of Holliday junctions, collapse of stalled replication forks and removal of DNA flaps. The nuclease subunit SLX1 is inactive on its own, but become activated upon binding to SLX4 via its conserved C-terminal domain (CCD). Yet, how the SLX1-SLX4 complex recognizes specific DNA structure and chooses cleavage sites remains unknown. Here we show, through a combination of structural, biochemical and computational analyses, that the SAP domain of SLX4 is critical for efficient and accurate processing of 5'-flap DNA. It binds the minor groove of DNA about one turn away from the flap junction, and the 5'-flap is implicated in binding the core domain of SLX1. This binding mode accounts for specific recognition of 5'-flap DNA and specification of cleavage site by the SLX1-SLX4 complex.


Structural Insights into Stimulation of Ash1L's H3K36 Methyltransferase Activity through Mrg15 Binding.

  • Peini Hou‎ et al.
  • Structure (London, England : 1993)‎
  • 2019‎

The evolutionarily conserved Trithorax group protein Ash1 is a SET domain histone methyltransferase that mono- and dimethylates lysine 36 of histone H3 (H3K36). Ash1 forms a complex with Mrg15 and Nurf55, and the binding of Mrg15 greatly stimulates the catalytic activity of Ash1, yet the underlying molecular mechanisms remain unknown. Here we report the crystal structure of the tandem Mrg15-interacting and SET domains of human Ash1L in complex with Mrg15. Ash1L interacts with Mrg15 principally via a segment located N-terminal to the catalytic SET domain. Surprisingly, an autoinhibitory loop in the post-SET region of Ash1L is destabilized on Mrg15 binding despite no direct contact. Dynamics of the autoinhibitory loop can be attributed to subtle structural changes of the S-adenosylmethionine (SAM) binding pocket induced by Mrg15 binding, implicating a mechanism of conformational coupling between SAM and substrate binding sites. The findings broaden the understanding of regulation of H3K36 methyltransferases.


Selective small-chemical inhibitors of protein arginine methyltransferase 5 with anti-lung cancer activity.

  • Gui-Mei Kong‎ et al.
  • PloS one‎
  • 2017‎

Protein arginine methyltransferase 5 (PRMT5) plays critical roles in a wide variety of biological processes, including tumorigenesis. By screening a library of small chemical compounds, we identified eight compounds that selectively inhibit the PRMT5 enzymatic activity, with IC50 values ranging from 0.1 to 6 μM. Molecular docking simulation and site-directed mutagenesis indicated that identified compounds target the substrate-binding site in PRMT5. Treatment of lung cancer cells with identified inhibitors led to inhibition of the symmetrical arginine methylation of SmD3 and histones and the cellular proliferation. Oral administration of the inhibitor demonstrated antitumor activity in a lung tumor xenograft model. Thus, identified PRMT5-specific small-molecule inhibitors would help elucidate the biological roles of PRMT5 and serve as lead compounds for future drug development.


A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy.

  • Li-Heng Che‎ et al.
  • Cell discovery‎
  • 2021‎

Metastasis is the primary cause of cancer-related mortality in colorectal cancer (CRC) patients. How to improve therapeutic options for patients with metastatic CRC is the core question for CRC treatment. However, the complexity and diversity of stromal context of the tumor microenvironment (TME) in liver metastases of CRC have not been fully understood, and the influence of stromal cells on response to chemotherapy is unclear. Here we performed an in-depth analysis of the transcriptional landscape of primary CRC, matched liver metastases and blood at single-cell resolution, and a systematic examination of transcriptional changes and phenotypic alterations of the TME in response to preoperative chemotherapy (PC). Based on 111,292 single-cell transcriptomes, our study reveals that TME of treatment-naïve tumors is characterized by the higher abundance of less-activated B cells and higher heterogeneity of tumor-associated macrophages (TAMs). By contrast, in tumors treated with PC, we found activation of B cells, lower diversity of TAMs with immature and less activated phenotype, lower abundance of both dysfunctional T cells and ECM-remodeling cancer-associated fibroblasts, and an accumulation of myofibroblasts. Our study provides a foundation for future investigation of the cellular mechanisms underlying liver metastasis of CRC and its response to PC, and opens up new possibilities for the development of therapeutic strategies for CRC.


Phosphorylation at Ser68 facilitates DCAF11-mediated ubiquitination and degradation of CENP-A during the cell cycle.

  • Kehui Wang‎ et al.
  • Cell reports‎
  • 2021‎

CENP-A (centromeric protein A), a histone H3 variant, specifies centromere identity and is essential to centromere maintenance. Little is known about how protein levels of CENP-A are controlled in mammalian cells. Here, we report that the phosphorylation of CENP-A Ser68 primes the ubiquitin-proteasome-mediated proteolysis of CENP-A during mitotic phase in human cultured cells. We identify two major polyubiquitination sites that are responsible for this phosphorylation-dependent degradation. Substituting the two residues, Lys49 and Lys124, with arginines abrogates proper CENP-A degradation and results in CENP-A mislocalization to non-centromeric regions. Furthermore, we find that DCAF11 (DDB1 and CUL4 associated factor 11/WDR23) is the E3 ligase that specifically mediates the observed polyubiquitination. Deletion of DCAF11 hampers CENP-A degradation and causes its mislocalization. We conclude that the Ser68 phosphorylation plays an important role in regulating cellular CENP-A homeostasis via DCAF11-mediated degradation to prevent ectopic localization of CENP-A during the cell cycle.


Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30.

  • Ke Liu‎ et al.
  • PloS one‎
  • 2012‎

SMN (Survival motor neuron protein) was characterized as a dimethyl-arginine binding protein over ten years ago. TDRD3 (Tudor domain-containing protein 3) and SPF30 (Splicing factor 30 kDa) were found to bind to various methyl-arginine proteins including Sm proteins as well later on. Recently, TDRD3 was shown to be a transcriptional coactivator, and its transcriptional activity is dependent on its ability to bind arginine-methylated histone marks. In this study, we systematically characterized the binding specificity and affinity of the Tudor domains of these three proteins quantitatively. Our results show that TDRD3 preferentially recognizes asymmetrical dimethylated arginine mark, and SMN is a very promiscuous effector molecule, which recognizes different arginine containing sequence motifs and preferentially binds symmetrical dimethylated arginine. SPF30 is the weakest methyl-arginine binder, which only binds the GAR motif sequences in our library. In addition, we also reported high-resolution crystal structures of the Tudor domain of TDRD3 in complex with two small molecules, which occupy the aromatic cage of TDRD3.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: