Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Both Maintenance and Avoidance of RNA-Binding Protein Interactions Constrain Coding Sequence Evolution.

  • Rosina Savisaar‎ et al.
  • Molecular biology and evolution‎
  • 2017‎

While the principal force directing coding sequence (CDS) evolution is selection on protein function, to ensure correct gene expression CDSs must also maintain interactions with RNA-binding proteins (RBPs). Understanding how our genes are shaped by these RNA-level pressures is necessary for diagnostics and for improving transgenes. However, the evolutionary impact of the need to maintain RBP interactions remains unresolved. Are coding sequences constrained by the need to specify RBP binding motifs? If so, what proportion of mutations are affected? Might sequence evolution also be constrained by the need not to specify motifs that might attract unwanted binding, for instance because it would interfere with exon definition? Here, we have scanned human CDSs for motifs that have been experimentally determined to be recognized by RBPs. We observe two sets of motifs-those that are enriched over nucleotide-controlled null and those that are depleted. Importantly, the depleted set is enriched for motifs recognized by non-CDS binding RBPs. Supporting the functional relevance of our observations, we find that motifs that are more enriched are also slower-evolving. The net effect of this selection to preserve is a reduction in the over-all rate of synonymous evolution of 2-3% in both primates and rodents. Stronger motif depletion, on the other hand, is associated with stronger selection against motif gain in evolution. The challenge faced by our CDSs is therefore not only one of attracting the right RBPs but also of avoiding the wrong ones, all while also evolving under selection pressures related to protein structure.


A Major Locus Controls a Genital Shape Difference Involved in Reproductive Isolation Between Drosophila yakuba and Drosophila santomea.

  • Alexandre E Peluffo‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

Rapid evolution of genitalia shape, a widespread phenomenon in animals with internal fertilization, offers the opportunity to dissect the genetic architecture of morphological evolution linked to sexual selection and speciation. Most quantitative trait loci (QTL) mapping studies of genitalia divergence have focused on Drosophila melanogaster and its three most closely related species, D. simulans, D. mauritiana, and D. sechellia, and have suggested that the genetic basis of genitalia evolution involves many loci. We report the first genetic study of male genitalia evolution between D. yakuba and D. santomea, two species of the D. melanogaster species subgroup. We focus on male ventral branches, which harm females during interspecific copulation. Using landmark-based geometric morphometrics, we characterized shape variation in parental species, F1 hybrids, and backcross progeny and show that the main axis of shape variation within the backcross population matches the interspecific variation between parental species. For genotyping, we developed a new molecular method to perform multiplexed shotgun genotyping (MSG), which allowed us to prepare genomic DNA libraries from 365 backcross individuals in a few days using little DNA. We detected only three QTL, one of which spans 2.7 Mb and exhibits a highly significant effect on shape variation that can be linked to the harmfulness of the ventral branches. We conclude that the genetic architecture of genitalia morphology divergence may not always be as complex as suggested by previous studies.


SDHA related tumorigenesis: a new case series and literature review for variant interpretation and pathogenicity.

  • Ruth T Casey‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2017‎

To evaluate the role of germline SDHA mutation analysis by (1) comprehensive literature review, (2) description of novel germline SDHA mutations and (3) in silico structural prediction analysis of missense substitutions in SDHA.


Estimating the prevalence of functional exonic splice regulatory information.

  • Rosina Savisaar‎ et al.
  • Human genetics‎
  • 2017‎

In addition to coding information, human exons contain sequences necessary for correct splicing. These elements are known to be under purifying selection and their disruption can cause disease. However, the density of functional exonic splicing information remains profoundly uncertain. Several groups have experimentally investigated how mutations at different exonic positions affect splicing. They have found splice information to be distributed widely in exons, with one estimate putting the proportion of splicing-relevant nucleotides at >90%. These results suggest that splicing could place a major pressure on exon evolution. However, analyses of sequence conservation have concluded that the need to preserve splice regulatory signals only slightly constrains exon evolution, with a resulting decrease in the average human rate of synonymous evolution of only 1-4%. Why do these two lines of research come to such different conclusions? Among other reasons, we suggest that the methods are measuring different things: one assays the density of sites that affect splicing, the other the density of sites whose effects on splicing are visible to selection. In addition, the experimental methods typically consider short exons, thereby enriching for nucleotides close to the splice junction, such sites being enriched for splice-control elements. By contrast, in part owing to correction for nucleotide composition biases and to the assumption that constraint only operates on exon ends, the conservation-based methods can be overly conservative.


Computational prediction of human deep intronic variation.

  • Pedro Barbosa‎ et al.
  • GigaScience‎
  • 2022‎

The adoption of whole-genome sequencing in genetic screens has facilitated the detection of genetic variation in the intronic regions of genes, far from annotated splice sites. However, selecting an appropriate computational tool to discriminate functionally relevant genetic variants from those with no effect is challenging, particularly for deep intronic regions where independent benchmarks are scarce.


Purifying Selection on Exonic Splice Enhancers in Intronless Genes.

  • Rosina Savisaar‎ et al.
  • Molecular biology and evolution‎
  • 2016‎

Exonic splice enhancers (ESEs) are short nucleotide motifs, enriched near exon ends, that enhance the recognition of the splice site and thus promote splicing. Are intronless genes under selection to avoid these motifs so as not to attract the splicing machinery to an mRNA that should not be spliced, thereby preventing the production of an aberrant transcript? Consistent with this possibility, we find that ESEs in putative recent retrocopies are at a higher density and evolving faster than those in other intronless genes, suggesting that they are being lost. Moreover, intronless genes are less dense in putative ESEs than intron-containing ones. However, this latter difference is likely due to the skewed base composition of intronless sequences, a skew that is in line with the general GC richness of few exon genes. Indeed, after controlling for such biases, we find that both intronless and intron-containing genes are denser in ESEs than expected by chance. Importantly, nucleotide-controlled analysis of evolutionary rates at synonymous sites in ESEs indicates that the ESEs in intronless genes are under purifying selection in both human and mouse. We conclude that on the loss of introns, some but not all, ESE motifs are lost, the remainder having functions beyond a role in splice promotion. These results have implications for the design of intronless transgenes and for understanding the causes of selection on synonymous sites.


Evidence in disease and non-disease contexts that nonsense mutations cause altered splicing via motif disruption.

  • Liam Abrahams‎ et al.
  • Nucleic acids research‎
  • 2021‎

Transcripts containing premature termination codons (PTCs) can be subject to nonsense-associated alternative splicing (NAS). Two models have been evoked to explain this, scanning and splice motif disruption. The latter postulates that exonic cis motifs, such as exonic splice enhancers (ESEs), are disrupted by nonsense mutations. We employ genome-wide transcriptomic and k-mer enrichment methods to scrutinize this model. First, we show that ESEs are prone to disruptive nonsense mutations owing to their purine richness and paucity of TGA, TAA and TAG. The motif model correctly predicts that NAS rates should be low (we estimate 5-30%) and approximately in line with estimates for the rate at which random point mutations disrupt splicing (8-20%). Further, we find that, as expected, NAS-associated PTCs are predictable from nucleotide-based machine learning approaches to predict splice disruption and, at least for pathogenic variants, are enriched in ESEs. Finally, we find that both in and out of frame mutations to TAA, TGA or TAG are associated with exon skipping. While a higher relative frequency of such skip-inducing mutations in-frame than out of frame lends some credence to the scanning model, these results reinforce the importance of considering splice motif modulation to understand the etiology of PTC-associated disease.


Transcription and splicing dynamics during early Drosophila development.

  • Pedro Prudêncio‎ et al.
  • RNA (New York, N.Y.)‎
  • 2022‎

Widespread cotranscriptional splicing has been demonstrated from yeast to human. However, most studies to date addressing the kinetics of splicing relative to transcription used either Saccharomyces cerevisiae or metazoan cultured cell lines. Here, we adapted native elongating transcript sequencing technology (NET-seq) to measure cotranscriptional splicing dynamics during the early developmental stages of Drosophila melanogaster embryos. Our results reveal the position of RNA polymerase II (Pol II) when both canonical and recursive splicing occur. We found heterogeneity in splicing dynamics, with some RNAs spliced immediately after intron transcription, whereas for other transcripts no splicing was observed over the first 100 nt of the downstream exon. Introns that show splicing completion before Pol II has reached the end of the downstream exon are necessarily intron-defined. We studied the splicing dynamics of both nascent pre-mRNAs transcribed in the early embryo, which have few and short introns, as well as pre-mRNAs transcribed later in embryonic development, which contain multiple long introns. As expected, we found a relationship between the proportion of spliced reads and intron size. However, intron definition was observed at all intron sizes. We further observed that genes transcribed in the early embryo tend to be isolated in the genome whereas genes transcribed later are often overlapped by a neighboring convergent gene. In isolated genes, transcription termination occurred soon after the polyadenylation site, while in overlapped genes, Pol II persisted associated with the DNA template after cleavage and polyadenylation of the nascent transcript. Taken together, our data unravel novel dynamic features of Pol II transcription and splicing in the developing Drosophila embryo.


Codon Usage and Splicing Jointly Influence mRNA Localization.

  • Christine Mordstein‎ et al.
  • Cell systems‎
  • 2020‎

In the human genome, most genes undergo splicing, and patterns of codon usage are splicing dependent: guanine and cytosine (GC) content is the highest within single-exon genes and within first exons of multi-exon genes. However, the effects of codon usage on gene expression are typically characterized in unspliced model genes. Here, we measured the effects of splicing on expression in a panel of synonymous reporter genes that varied in nucleotide composition. We found that high GC content increased protein yield, mRNA yield, cytoplasmic mRNA localization, and translation of unspliced reporters. Splicing did not affect the expression of GC-rich variants. However, splicing promoted the expression of AT-rich variants by increasing their steady-state protein and mRNA levels, in part through promoting cytoplasmic localization of mRNA. We propose that splicing promotes the nuclear export of AU-rich mRNAs and that codon- and splicing-dependent effects on expression are under evolutionary pressure in the human genome.


Correlated Evolution of Two Copulatory Organs via a Single cis-Regulatory Nucleotide Change.

  • Olga Nagy‎ et al.
  • Current biology : CB‎
  • 2018‎

Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.


Exonic splice regulation imposes strong selection at synonymous sites.

  • Rosina Savisaar‎ et al.
  • Genome research‎
  • 2018‎

What proportion of coding sequence nucleotides have roles in splicing, and how strong is the selection that maintains them? Despite a large body of research into exonic splice regulatory signals, these questions have not been answered. This is because, to our knowledge, previous investigations have not explicitly disentangled the frequency of splice regulatory elements from the strength of the evolutionary constraint under which they evolve. Current data are consistent both with a scenario of weak and diffuse constraint, enveloping large swaths of sequence, as well as with well-defined pockets of strong purifying selection. In the former case, natural selection on exonic splice enhancers (ESEs) might primarily act as a slight modifier of codon usage bias. In the latter, mutations that disrupt ESEs are likely to have large fitness and, potentially, clinical effects. To distinguish between these scenarios, we used several different methods to determine the distribution of selection coefficients for new mutations within ESEs. The analyses converged to suggest that ∼15%-20% of fourfold degenerate sites are part of functional ESEs. Most of these sites are under strong evolutionary constraint. Therefore, exonic splice regulation does not simply impose a weak bias that gently nudges coding sequence evolution in a particular direction. Rather, the selection to preserve these motifs is a strong force that severely constrains the evolution of a substantial proportion of coding nucleotides. Thus synonymous mutations that disrupt ESEs should be considered as a potentially common cause of single-locus genetic disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: