2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Polytropic Influence of TRIB3 rs2295490 Genetic Polymorphism on Response to Antihypertensive Agents in Patients With Essential Hypertension.

  • Jiecan Zhou‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Tribbles homolog 3 (TRIB3) mediating signaling pathways are closely related to blood pressure regulation. Our previous findings suggested a greater benefit on vascular outcomes in patients carrying TRIB3 (251, A > G, rs2295490) G allele with good glucose and blood pressure control. And TRIB3 (rs2295490) AG/GG genotypes were found to reduce primary vascular events in type 2 diabetic patients who received intensive glucose treatment as compared to those receiving standard glucose treatment. However, the effect of TRIB3 genetic variation on antihypertensives was not clear in essential hypertension patients. A total of 368 patients treated with conventional dosage of antihypertensives (6 groups, grouped by atenolol/bisoprolol, celiprolol, doxazosin, azelnidipine/nitrendipine, imidapril, and candesartan/irbesartan) were enrolled in our study. Genetic variations were successfully identified by sanger sequencing. A linear mixed model analysis was performed to evaluate blood pressures among TRIB3 (251, A > G) genotypes and adjusted for baseline age, gender, body mass index, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol and other biochemical factors appropriately. Our data suggested that TRIB3 (251, A > G) AA genotype carriers showed better antihypertensive effect than the AG/GG genotype carriers [P = 0.014 for DBP and P = 0.042 for mean arterial pressure (MAP)], with a maximal reduction of DBP by 4.2 mmHg and MAP by 3.56 mmHg after azelnidipine or nitrendipine treatment at the 4th week. Similar tendency of DBP-change and MAP-change was found for imidapril (ACEI) treatment, in which marginally significances were achieved (P = 0.073 and 0.075, respectively). Against that, we found that TRIB3 (251, A > G) AG/GG genotype carriers benefited from antihypertensive therapy of ARBs with a larger DBP-change during the period of observation (P = 0.036). Additionally, stratified analysis revealed an obvious difference of the maximal blood pressure change (13 mmHg for the MAP between male and female patients with AA genotype who took ARBs). Although no significant difference in antihypertensive effect between TRIB3 (251, A > G) genotypes in patients treated with α, β-ADRs was observed, we found significant difference in age-, sex-dependent manner related to α, β-ADRs. In conclusion, our data supported that TRIB3 (251, A > G) genetic polymorphism may serve as a useful biomarker in the treatment of hypertension.


Xiaoyao Pills Ameliorate Depression-like Behaviors and Oxidative Stress Induced by Olfactory Bulbectomy in Rats via the Activation of the PIK3CA-AKT1-NFE2L2/BDNF Signaling Pathway.

  • Yafei Ji‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Numerous studies have revealed that oxidative stress is closely associated with the occurrence and development of depression. Xiaoyao Pills (XYW) are included in the Chinese Pharmacopoeia and are frequently used for treating anxiety and depression by smoothing the liver, strengthening the spleen, and nourishing the blood. However, the antidepressant effects of XYW have not yet been thoroughly investigated. The objective of our study was to investigate the antidepressant-like effects of XYW and the underlying molecular mechanism in the olfactory bulbectomized (OB) rat model of depression using the open field test (OFT), sucrose preference test (SPT), splash test (ST), and novelty suppressed feeding test (NSFT). Results showed that XYW (0.93 and 1.86 g·kg-1) significantly alleviated depression-like behaviors in rats, which was indicated by increased sucrose preference in the SPT, prolonged grooming time in the ST, decreased horizontal movement in the OFT, and shorter feeding latency in the NSFT. In addition, XYW treatment dramatically reversed the reduced activity of superoxide dismutase and the decreased level of glutathione, while also lowering levels of malondialdehyde, an inflammatory mediator (nitric oxide), and pro-inflammatory cytokines (interleukin-6 and 1β) in the serum and cortex of OB rats. Mechanistically, XYW induced marked upregulation of mRNA and protein expression levels of NFE2L2, KEAP1, GPX3, HMOX1, SOD1, NQO1, OGG1, PIK3CA, p-AKT1/AKT1, NTRK2, and BDNF, and downregulation of ROS in the cortex and hippocampus via the activation of the NFE2L2/KEAP1, PIK3CA/AKT1, and NTRK2/BDNF pathways. These findings suggest that XYW exert antidepressant-like effects in OB rats with depression-like symptoms, and these effects are mediated by the alleviation of oxidative stress and the enhancement of neuroprotective effects through the activation of the PIK3CA-AKT1-NFE2L2/BDNF signaling pathways.


LncRNA Profile Study Reveals a Three-LncRNA Signature Associated With the Pathological Complete Response Following Neoadjuvant Chemotherapy in Breast Cancer.

  • Ying Zeng‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

The purpose of this study is to develop an effective but concise long non-coding RNA (lncRNA) expression signature that can predict response to neoadjuvant chemotherapy for breast cancer (BC) patients.


PRMT5 Prevents Cardiomyocyte Hypertrophy via Symmetric Dimethylating HoxA9 and Repressing HoxA9 Expression.

  • Sidong Cai‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

The present study reveals a link between protein arginine methyltransferase 5 (PRMT5) and Homebox A9 (HoxA9) in the regulation of cardiomyocyte hypertrophy. In cardiomyocyte hypertrophy induced by β-adrenergic receptor agonist isoprenaline (ISO), PRMT5 expression was decreased while HoxA9 was upregulated. Silencing of PRMT5 or inhibition of PRMT5 by its pharmacological inhibitor EPZ augmented the expressions of cardiomyocyte hypertrophic genes brain natriuretic peptide (BNP) and β-Myosin Heavy Chain (β-MHC), whereas overexpression of PRMT5 inhibited ISO-induced cardiomyocyte hypertrophy, suggesting that PRMT5 ameliorates cardiomyocyte hypertrophy. On the contrary, HoxA9 promoted cardiomyocyte hypertrophy, as implied by the gain-of-function and loss-of-function experiments. HoxA9 was involved in the regulation of PRMT5 in cardiomyocyte hypertrophy, since HoxA9 knockdown prevented si-RPMT5-induced cardiomyocyte hypertrophy, and HoxA9 expression impaired the anti-hypertrophic effect of PRMT5. Co-immunoprecipitation experiments revealed that there were physical interactions between PRMT5 and HoxA9. The symmetric dimethylation level of HoxA9 was decreased by ISO or EPZ treatment, suggesting that HoxA9 is methylated by PRMT5. Additionally, PRMT5 repressed the expression of HoxA9. Chromatin immunoprecipitation (ChIP) assay demonstrated that HoxA9 could bind to the promoter of BNP, and that this binding affinity was further enhanced by ISO or EPZ. In conclusion, this study suggests that PRMT5 symmetric dimethylates HoxA9 and represses HoxA9 expression, thus impairing its binding to BNP promoter and ultimately protecting against cardiomyocyte hypertrophy. These findings provide a novel insight of the mechanism underlying the cardiac protective effect of PRMT5, and suggest potential therapeutic strategies of PRMT5 activation or HoxA9 inhibition in treatment of cardiac hypertrophy.


Intensive Glucose Control Reduces the Risk Effect of TRIB3, SMARCD3, and ATF6 Genetic Variation on Diabetic Vascular Complications.

  • Fazhong He‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

Type 2 diabetes mellitus is a complex disease. Our previous study revealed that TRIB3 genetic variations were strongly associated with diabetic vascular complications, although TRIB3 regulation pathways remain poorly understood. We used two extreme treatment groups from a 2 × 2 factorial randomized controlled trial to identify a positive association, which was further validated in patients receiving cross treatment to test the effect of genetic polymorphisms among the different treatment groups. A gene-centric score (GS)-weighted model including the three associated genetic variations TRIB3 rs2295490, ATF6 rs12086247, and SMARCD3 rs58125572 was used. The results of the GS model indicated a 46% reduction in the risk of primary vascular complications in patients bearing more than two risk alleles [hazard ratio (HR) 0.54, 95% confidence interval (CI) 0.38-0.76, p < 0.001], following intensive glucose control treatment when compared with patients who received standard glucose control treatment. Furthermore, these patients benefited from active blood pressure-lowering treatment (HR 0.39, 95% CI 0.24-0.64, p < 0.001). However, no significant difference was observed between the two interventions in patients with fewer than two risk alleles (HR 1.09, 95% CI 0.86-1.39, p = 0.47). These results indicate that genetic variants in these three genes may be useful biomarkers for individualized drug therapy in diabetic patients.


Xiaoyao Pills Prevent Lipopolysaccharide-Induced Depression by Inhibiting Inflammation and Protecting Nerves.

  • Boyu Shi‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Lipopolysaccharides are pro-inflammation mediators that can induce inflammation in the serum, hippocampus, and cortex of animals. And lipopolysaccharide-induced neuroinflammatory state resulted in significant depression-like behaviors, including reduced locomotor activity in the open field test, reduced saccharin preference, added immobility time in tail suspension test and forced swimming test, decreased comb time in the splash test, and increased latency to food in the novelty suppressed feeding test time, and reduced the levels of neurotrophic factors and synaptic proteins, and decreased Nissl bodies. Treatment with Xiaoyao Pills ameliorated the depression-like behavior, decreased the levels of inflammatory indicators, increased those of neurotrophic factors and synaptic proteins, and restored Nissl bodies. Our study suggests that lipopolysaccharides induce inflammation and nerve injury, thereby leading to depression. Xiaoyao Pills could be considered a potential therapeutic candidate for inflammation-induced depression.


TRAF-STOP alleviates osteoclastogenesis in periodontitis.

  • Yaxian Huang‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

The enhanced osteoclastogenesis contributes to alveolar bone resorption in periodontitis, which increases the risk of tooth loss. To reduce bone destruction, the inhibition of osteoclast development is proposed as a feasible treatment. CD40L-CD40-TRAF6 signal transduction plays a crucial role in inflammation, but how it regulates osteoclast activity in periodontitis has not been elucidated. In this study, we showed the potential role of CD40L-CD40-TRAF6 signaling in periodontitis. CD40L obviously promoted osteoclast formation and bone resorption capacity in vitro. Mechanistically, we found that osteoclastogenesis was enhanced by the overexpression of NFATc1 and NF-κB activation. Importantly, osteoclast activity was effectively suppressed by TRAF-STOP, a small molecular inhibitor of TRAF6. Furthermore, local injection of TRAF-STOP-loaded injectable PLGA-PEG-PLGA hydrogel could alleviate ligation-induced periodontitis in vivo. Taken together, TRAF-STOP shows promising clinical efficacy in periodontitis through alleviating osteoclastogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: