Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation.

  • Daniel J Hermanson‎ et al.
  • Nature neuroscience‎
  • 2013‎

Augmentation of endogenous cannabinoid (eCB) signaling represents an emerging approach to the treatment of affective disorders. Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid to form prostaglandins, but also inactivates eCBs in vitro. However, the viability of COX-2 as a therapeutic target for in vivo eCB augmentation has not been explored. Using medicinal chemistry and in vivo analytical and behavioral pharmacological approaches, we found that COX-2 is important for the regulation of eCB levels in vivo. We used a pharmacological strategy involving substrate-selective inhibition of COX-2 to augment eCB signaling without affecting related non-eCB lipids or prostaglandin synthesis. Behaviorally, substrate-selective inhibition of COX-2 reduced anxiety-like behaviors in mice via increased eCB signaling. Our data suggest a key role for COX-2 in the regulation of eCB signaling and indicate that substrate-selective pharmacology represents a viable approach for eCB augmentation with broad therapeutic potential.


Reduced bioavailable manganese causes striatal urea cycle pathology in Huntington's disease mouse model.

  • Terry Jo V Bichell‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2017‎

Huntington's disease (HD) is caused by a mutation in the huntingtin gene (HTT), resulting in profound striatal neurodegeneration through an unknown mechanism. Perturbations in the urea cycle have been reported in HD models and in HD patient blood and brain. In neurons, arginase is a central urea cycle enzyme, and the metal manganese (Mn) is an essential cofactor. Deficient biological responses to Mn, and reduced Mn accumulation have been observed in HD striatal mouse and cell models. Here we report in vivo and ex vivo evidence of a urea cycle metabolic phenotype in a prodromal HD mouse model. Further, either in vivo or in vitro Mn supplementation reverses the urea-cycle pathology by restoring arginase activity. We show that Arginase 2 (ARG2) is the arginase enzyme present in these mouse brain models, with ARG2 protein levels directly increased by Mn exposure. ARG2 protein is not reduced in the prodromal stage, though enzyme activity is reduced, indicating that altered Mn bioavailability as a cofactor leads to the deficient enzymatic activity. These data support a hypothesis that mutant HTT leads to a selective deficiency of neuronal Mn at an early disease stage, contributing to HD striatal urea-cycle pathophysiology through an effect on arginase activity.


A Novel Human CAMK2A Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors.

  • Jason R Stephenson‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes.SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD.


Densin-180 Controls the Trafficking and Signaling of L-Type Voltage-Gated Cav1.2 Ca2+ Channels at Excitatory Synapses.

  • Shiyi Wang‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Voltage-gated Cav1.2 and Cav1.3 (L-type) Ca2+ channels regulate neuronal excitability, synaptic plasticity, and learning and memory. Densin-180 (densin) is an excitatory synaptic protein that promotes Ca2+-dependent facilitation of voltage-gated Cav1.3 Ca2+ channels in transfected cells. Mice lacking densin (densin KO) exhibit defects in synaptic plasticity, spatial memory, and increased anxiety-related behaviors-phenotypes that more closely match those in mice lacking Cav1.2 than Cav1.3. Therefore, we investigated the functional impact of densin on Cav1.2. We report that densin is an essential regulator of Cav1.2 in neurons, but has distinct modulatory effects compared with its regulation of Cav1.3. Densin binds to the N-terminal domain of Cav1.2, but not that of Cav1.3, and increases Cav1.2 currents in transfected cells and in neurons. In transfected cells, densin accelerates the forward trafficking of Cav1.2 channels without affecting their endocytosis. Consistent with a role for densin in increasing the number of postsynaptic Cav1.2 channels, overexpression of densin increases the clustering of Cav1.2 in dendrites of hippocampal neurons in culture. Compared with wild-type mice, the cell surface levels of Cav1.2 in the brain, as well as Cav1.2 current density and signaling to the nucleus, are reduced in neurons from densin KO mice. We conclude that densin is an essential regulator of neuronal Cav1 channels and ensures efficient Cav1.2 Ca2+ signaling at excitatory synapses.SIGNIFICANCE STATEMENT The number and localization of voltage-gated Cav Ca2+ channels are crucial determinants of neuronal excitability and synaptic transmission. We report that the protein densin-180 is highly enriched at excitatory synapses in the brain and enhances the cell surface trafficking and postsynaptic localization of Cav1.2 L-type Ca2+ channels in neurons. This interaction promotes coupling of Cav1.2 channels to activity-dependent gene transcription. Our results reveal a mechanism that may contribute to the roles of Cav1.2 in regulating cognition and mood.


Alcohol exposure alters NMDAR function in the bed nucleus of the stria terminalis.

  • Thomas L Kash‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2009‎

Chronic alcohol exposure can cause dramatic behavioral alterations, including increased anxiety-like behavior and depression. These alterations are proposed to be due in part to adaptations in the brain regions that regulate emotional behavior, including the bed nucleus of the stria terminalis (BNST), a principal output nucleus of the amygdala. However, to date there have been no studies that have examined the impact of in vivo alcohol exposure on synaptic function in the BNST. To better understand how alcohol can alter neuronal function, we examined the ability of in vivo alcohol exposure to alter glutamatergic transmission in the BNST using whole-cell voltage clamp recordings and biochemistry in brain slices obtained from C57Bl6 mice. Chronic intermittent, but not continuous, ethanol vapor exposure increased temporal summation of NMDA receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs). Both electrophysiological and biochemical approaches suggest that this difference is not because of an alteration in glutamate release, but rather an increase in the levels of NR2B-containing NMDARs. Further, we found that ethanol modulation of NMDAR in the vBNST is altered after intermittent alcohol exposure. Our results support the hypothesis that NMDAR-mediated synaptic transmission is sensitized at key synapses in the extended amygdala and thus may be a suitable target for manipulation of the behavioral deficits associated with acute withdrawal from chronic alcohol exposure.


Chronic intermittent alcohol disrupts the GluN2B-associated proteome and specifically regulates group I mGlu receptor-dependent long-term depression.

  • Tiffany A Wills‎ et al.
  • Addiction biology‎
  • 2017‎

N-Methyl-d-aspartate receptors (NMDARs) are major targets of both acute and chronic alcohol, as well as regulators of plasticity in a number of brain regions. Aberrant plasticity may contribute to the treatment resistance and high relapse rates observed in alcoholics. Recent work suggests that chronic alcohol treatment preferentially modulates both the expression and subcellular localization of NMDARs containing the GluN2B subunit. Signaling through synaptic and extrasynaptic GluN2B-NMDARs has already been implicated in the pathophysiology of various other neurological disorders. NMDARs interact with a large number of proteins at the glutamate synapse, and a better understanding of how alcohol modulates this proteome is needed. We employed a discovery-based proteomic approach in subcellular fractions of hippocampal tissue from chronic intermittent alcohol (CIE)-exposed C57Bl/6J mice to gain insight into alcohol-induced changes in GluN2B signaling complexes. Protein enrichment analyses revealed changes in the association of post-synaptic proteins, including scaffolding, glutamate receptor and PDZ-domain binding proteins with GluN2B. In particular, GluN2B interaction with metabotropic glutamate (mGlu)1/5 receptor-dependent long-term depression (LTD)-associated proteins such as Arc and Homer 1 was increased, while GluA2 was decreased. Accordingly, we found a lack of mGlu1/5 -induced LTD while α1 -adrenergic receptor-induced LTD remained intact in hippocampal CA1 following CIE. These data suggest that CIE specifically disrupts mGlu1/5 -LTD, representing a possible connection between NMDAR and mGlu receptor signaling. These studies not only demonstrate a new way in which alcohol can modulate plasticity in the hippocampus but also emphasize the utility of this discovery-based proteomic approach to generate new hypotheses regarding alcohol-related mechanisms.


Genetic inhibition of CaMKII in dorsal striatal medium spiny neurons reduces functional excitatory synapses and enhances intrinsic excitability.

  • Jason R Klug‎ et al.
  • PloS one‎
  • 2012‎

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is abundant in striatal medium spiny neurons (MSNs). CaMKII is dynamically regulated by changes in dopamine signaling, as occurs in Parkinson's disease as well as addiction. Although CaMKII has been extensively studied in the hippocampus where it regulates excitatory synaptic transmission, relatively little is known about how it modulates neuronal function in the striatum. Therefore, we examined the impact of selectively overexpressing an EGFP-fused CaMKII inhibitory peptide (EAC3I) in striatal medium spiny neurons (MSNs) using a novel transgenic mouse model. EAC3I-expressing cells exhibited markedly decreased excitatory transmission, indicated by a decrease in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs). This decrease was not accompanied by changes in the probability of release, levels of glutamate at the synapse, or changes in dendritic spine density. CaMKII regulation of the AMPA receptor subunit GluA1 is a major means by which the kinase regulates neuronal function in the hippocampus. We found that the decrease in striatal excitatory transmission seen in the EAC3I mice is mimicked by deletion of GluA1. Further, while CaMKII inhibition decreased excitatory transmission onto MSNs, it increased their intrinsic excitability. These data suggest that CaMKII plays a critical role in setting the excitability rheostat of striatal MSNs by coordinating excitatory synaptic drive and the resulting depolarization response.


Age-dependent targeting of protein phosphatase 1 to Ca2+/calmodulin-dependent protein kinase II by spinophilin in mouse striatum.

  • Anthony J Baucum‎ et al.
  • PloS one‎
  • 2012‎

Mechanisms underlying age-dependent changes of dendritic spines on striatal medium spiny neurons are poorly understood. Spinophilin is an F-actin- and protein phosphatase 1 (PP1)-binding protein that targets PP1 to multiple downstream effectors to modulate dendritic spine morphology and function. We found that calcium/calmodulin-dependent protein kinase II (CaMKII) directly and indirectly associates with N- and C-terminal domains of spinophilin, but F-actin can displace CaMKII from the N-terminal domain. Spinophilin co-localizes PP1 with CaMKII on the F-actin cytoskeleton in heterologous cells, and spinophilin co-localizes with synaptic CaMKII in neuronal cultures. Thr286 autophosphorylation enhances the binding of CaMKII to spinophilin in vitro and in vivo. Although there is no change in total levels of Thr286 autophosphorylation, maturation from postnatal day 21 into adulthood robustly enhances the levels of CaMKII that co-immunoprecipitate with spinophilin from mouse striatal extracts. Moreover, N- and C-terminal domain fragments of spinophilin bind more CaMKII from adult vs. postnatal day 21 striatal lysates. Total levels of other proteins that interact with C-terminal domains of spinophilin decrease during maturation, perhaps reducing competition for CaMKII binding to the C-terminal domain. In contrast, total levels of α-internexin and binding of α-internexin to the spinophilin N-terminal domain increases with maturation, perhaps bridging an indirect interaction with CaMKII. Moreover, there is an increase in the levels of myosin Va, α-internexin, spinophilin, and PP1 in striatal CaMKII immune complexes isolated from adult and aged mice compared to those from postnatal day 21. These changes in spinophilin/CaMKII interactomes may contribute to changes in striatal dendritic spine density, morphology, and function during normal postnatal maturation and aging.


Developmentally regulated alternative splicing of densin modulates protein-protein interaction and subcellular localization.

  • Yuxia Jiao‎ et al.
  • Journal of neurochemistry‎
  • 2008‎

Densin is a member of the leucine-rich repeat (LRR) and PDZ domain (LAP) protein family that binds several signaling molecules via its C-terminal domains, including calcium/calmodulin-dependent protein kinase II (CaMKII). In this study, we identify several novel mRNA splice variants of densin that are differentially expressed during development. The novel variants share the LRR domain but are either prematurely truncated or contain internal deletions relative to mature variants of the protein (180 kDa), thus removing key protein-protein interaction domains. For example, CaMKIIalpha coimmunoprecipitates with densin splice variants containing an intact C-terminal domain from lysates of transfected HEK293 cells, but not with variants that only contain N-terminal domains. Immunoblot analyses using antibodies to peptide epitopes in the N- and C- terminal domains of densin are consistent with developmental regulation of splice variant expression in brain. Moreover, putative splice variants display different subcellular fractionation patterns in brain extracts. Expression of green fluorescent protein (GFP)-fused densin splice variants in HEK293 cells shows that the LRR domain can target densin to a plasma membrane-associated compartment, but that the splice variants are differentially localized and have potentially distinct effects on cell morphology. In combination, these data show that densin splice variants have distinct functional characteristics suggesting multiple roles during neuronal development.


CaMKII-mediated phosphorylation of GluN2B regulates recombinant NMDA receptor currents in a chloride-dependent manner.

  • Steven J Tavalin‎ et al.
  • Molecular and cellular neurosciences‎
  • 2017‎

Some forms of long-term synaptic plasticity require docking of Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) to residues 1290-1309 within the intracellular C-terminal tail of the N-methyl-d-aspartate (NMDA) receptor GluN2B subunit. The phosphorylation of Ser1303 within this region destabilizes CaMKII binding. Interestingly, Ser1303 is a substrate for CaMKII itself, as well as PKC and DAPK1, but these kinases have been reported to have contradictory effects on the activity of GluN2B-containing NMDA receptors. Here, we re-assessed the effect of CaMKII on NMDA receptor desensitization in heterologous cells, as measured by the ratio of steady-state to peak currents induced during 3s agonist applications. CaMKIIα co-expression or infusion of constitutively active CaMKII limits the extent of desensitization and preserves current amplitude with repeated stimulation of recombinant GluN1A/GluN2B when examined using low intracellular chloride (Cl-) levels, characteristic of neurons beyond the first postnatal week. In contrast, CaMKIIα enhances the acute rate and extent of desensitization when intracellular Cl- concentrations are high. The apparent dependence of CaMKIIα effects on NMDA receptor desensitization on Cl- concentrations is consistent with the presence of a Ca2+-activated Cl- conductance endogenous to HEK 293 cells, which was confirmed by photolysis of caged-Ca2+. However, Ca2+-activated Cl- conductances are unaffected by CaMKIIα expression, indicating that CaMKII affects agonist-induced whole cell currents via modulation of the NMDA receptor. In support of this idea, CaMKIIα modulation of GluN2B-NMDA receptors is abrogated by the phospho-null mutation of Ser1303 in GluN2B to alanine and occluded by phospho-mimetic mutation of Ser1303 to aspartate regardless of intracellular Cl- concentration. Thus, CaMKII-mediated phosphorylation of GluN2B-containing NMDA receptors reduces desensitization at physiological (low) intracellular Cl-, perhaps serving as a feed-forward mechanism to sustain NMDA-mediated Ca2+ entry and continued CaMKII activation during learning and memory.


CaMKIIα phosphorylation of Shank3 modulates ABI1-Shank3 interaction.

  • Tyler L Perfitt‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Protein-protein interactions can be modulated by phosphorylation of either binding partner, thereby altering subcellular localization and/or physiological function. Shank3, a master postsynaptic scaffolding protein that controls the developmental maturation of excitatory synapses, was recently shown to be phosphorylated by Protein Kinase A (PKA) at Ser685 in vivo. Mutation of Shank3 Ser685 was shown to modulate the binding of Abelson interactor 1 (ABI1), a component of the WAVE regulatory complex for actin remodeling, but a direct effect of Ser685 phosphorylation on ABI1 binding was not investigated. Here, we demonstrate that Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) also phosphorylates Shank3 at Ser685. Mutation of Ser685 to phospho-null alanine (S685A) prevented both CaMKIIα and PKA phosphorylation of a GST-Shank3 fusion protein. The co-immunoprecipitation of ABI1 with Shank3 from HEK293 cell extracts is reduced by mutation of Ser685 to either Ala or Asp. However, pre-phosphorylation of GST-Shank3 by purified CaMKIIα significantly increased binding of ABI1, and this effect was abrogated by Ser685 to Ala mutation in GST-Shank3. Taken together, our data suggest that neuronal ABI1-Shank3 interactions may be convergently regulated by Shank3 Ser685 phosphorylation in response to both Ca2+ and cAMP signaling, potentially modulating dendritic spine morphology.


Substrate-selective and calcium-independent activation of CaMKII by α-actinin.

  • Nidhi Jalan-Sakrikar‎ et al.
  • The Journal of biological chemistry‎
  • 2012‎

Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.


Selective targeting of the gamma1 isoform of protein phosphatase 1 to F-actin in intact cells requires multiple domains in spinophilin and neurabin.

  • Leigh C Carmody‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2008‎

Protein phosphatase 1 (PP1) catalytic subunits dephosphorylate specific substrates in discrete subcellular compartments to modulate many cellular processes. Canonical PP1-binding motifs (R/K-V/I-X-F) in a family of proteins mediate subcellular targeting, and the amino acids that form the binding pocket for the canonical motif are identical in all PP1 isoforms. However, PP1gamma1 but not PP1beta is selectively localized to F-actin-rich dendritic spines in neurons. Although the F-actin-binding proteins neurabin I and spinophilin (neurabin II) also bind PP1, their role in PP1 isoform selective targeting in intact cells is poorly understood. We show here that spinophilin selectively targets PP1gamma1, but not PP1beta, to F-actin-rich cortical regions of intact cells. Mutation of a PP1gamma1 selectivity determinant (N(464)EDYDRR(470) in spinophilin: conserved as residues 473-479 in neurabin) to VKDYDTW severely attenuated PP1gamma1 interactions with neurabins in vitro and in cells and disrupted PP1gamma1 targeting to F-actin. This domain is not involved in the weaker interactions of neurabins with PP1beta. In contrast, mutation of the canonical PP1-binding motif attenuated interactions of neurabins with both isoforms. Thus, selective targeting of PP1gamma1 to F-actin by neurabins in intact cells requires both the canonical PP1-binding motif and an auxiliary PP1gamma1-selectivity determinant.


CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling.

  • Brian C Shonesy‎ et al.
  • Nature neuroscience‎
  • 2013‎

The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates activity-dependent depression of excitatory neurotransmission at central synapses, but the molecular regulation of 2-AG synthesis is not well understood. Here we identify a functional interaction between the 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα) and calcium/calmodulin dependent protein kinase II (CaMKII). Activated CaMKII interacted with the C-terminal domain of DGLα, phosphorylated two serine residues and inhibited DGLα activity. Consistent with an inhibitory role for CaMKII in 2-AG synthesis, in vivo genetic inhibition of CaMKII increased striatal DGL activity and basal levels of 2-AG, and CaMKII inhibition augmented short-term retrograde endocannabinoid signaling at striatal glutamatergic synapses. Lastly, blockade of 2-AG breakdown using concentrations of JZL-184 that have no effect in wild-type mice produced a hypolocomotor response in mice with reduced CaMKII activity. These findings provide mechanistic insights into the molecular regulation of striatal endocannabinoid signaling with implications for physiological control of motor function.


The Atypical MAP Kinase SWIP-13/ERK8 Regulates Dopamine Transporters through a Rho-Dependent Mechanism.

  • Daniel P Bermingham‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

The neurotransmitter dopamine (DA) regulates multiple behaviors across phylogeny, with disrupted DA signaling in humans associated with addiction, attention-deficit/ hyperactivity disorder, schizophrenia, and Parkinson's disease. The DA transporter (DAT) imposes spatial and temporal limits on DA action, and provides for presynaptic DA recycling to replenish neurotransmitter pools. Molecular mechanisms that regulate DAT expression, trafficking, and function, particularly in vivo, remain poorly understood, though recent studies have implicated rho-linked pathways in psychostimulant action. To identify genes that dictate the ability of DAT to sustain normal levels of DA clearance, we pursued a forward genetic screen in Caenorhabditis elegans based on the phenotype swimming-induced paralysis (Swip), a paralytic behavior observed in hermaphrodite worms with loss-of-function dat-1 mutations. Here, we report the identity of swip-13, which encodes a highly conserved ortholog of the human atypical MAP kinase ERK8. We present evidence that SWIP-13 acts presynaptically to insure adequate levels of surface DAT expression and DA clearance. Moreover, we provide in vitro and in vivo evidence supporting a conserved pathway involving SWIP-13/ERK8 activation of Rho GTPases that dictates DAT surface expression and function.SIGNIFICANCE STATEMENT Signaling by the neurotransmitter dopamine (DA) is tightly regulated by the DA transporter (DAT), insuring efficient DA clearance after release. Molecular networks that regulate DAT are poorly understood, particularly in vivo Using a forward genetic screen in the nematode Caenorhabditis elegans, we implicate the atypical mitogen activated protein kinase, SWIP-13, in DAT regulation. Moreover, we provide in vitro and in vivo evidence that SWIP-13, as well as its human counterpart ERK8, regulate DAT surface availability via the activation of Rho proteins. Our findings implicate a novel pathway that regulates DA synaptic availability and that may contribute to risk for disorders linked to perturbed DA signaling. Targeting this pathway may be of value in the development of therapeutics in such disorders.


Identification and validation of novel spinophilin-associated proteins in rodent striatum using an enhanced ex vivo shotgun proteomics approach.

  • Anthony J Baucum‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2010‎

Spinophilin regulates excitatory postsynaptic function and morphology during development by virtue of its interactions with filamentous actin, protein phosphatase 1, and a plethora of additional signaling proteins. To provide insight into the roles of spinophilin in mature brain, we characterized the spinophilin interactome in subcellular fractions solubilized from adult rodent striatum by using a shotgun proteomics approach to identify proteins in spinophilin immune complexes. Initial analyses of samples generated using a mouse spinophilin antibody detected 23 proteins that were not present in an IgG control sample; however, 12 of these proteins were detected in complexes isolated from spinophilin knock-out tissue. A second screen using two different spinophilin antibodies and either knock-out or IgG controls identified a total of 125 proteins. The probability of each protein being specifically associated with spinophilin in each sample was calculated, and proteins were ranked according to a chi(2) analysis of the probabilities from analyses of multiple samples. Spinophilin and the known associated proteins neurabin and multiple isoforms of protein phosphatase 1 were specifically detected. Multiple, novel, spinophilin-associated proteins (myosin Va, calcium/calmodulin-dependent protein kinase II, neurofilament light polypeptide, postsynaptic density 95, alpha-actinin, and densin) were then shown to interact with GST fusion proteins containing fragments of spinophilin. Additional biochemical and transfected cell imaging studies showed that alpha-actinin and densin directly interact with residues 151-300 and 446-817, respectively, of spinophilin. Taken together, we have developed a multi-antibody, shotgun proteomics approach to characterize protein interactomes in native tissues, delineating the importance of knock-out tissue controls and providing novel insights into the nature and function of the spinophilin interactome in mature striatum.


Changes in the Adult GluN2B Associated Proteome following Adolescent Intermittent Ethanol Exposure.

  • H Scott Swartzwelder‎ et al.
  • PloS one‎
  • 2016‎

Adolescent alcohol use is the strongest predictor for alcohol use disorders. In rodents, adolescents have distinct responses to acute ethanol, and prolonged alcohol exposure during adolescence can maintain these phenotypes into adulthood. One brain region that is particularly sensitive to the effects of both acute and chronic ethanol exposure is the hippocampus. Adolescent intermittent ethanol exposure (AIE) produces long lasting changes in hippocampal synaptic plasticity and dendritic morphology, as well as in the susceptibility to acute ethanol-induced spatial memory impairment. Given the pattern of changes in hippocampal structure and function, one potential target for these effects is the ethanol sensitive GluN2B subunit of the NMDA receptor, which is known to be involved in synaptic plasticity and dendritic morphology. Thus we sought to determine if there were persistent changes in hippocampal GluN2B signaling cascades following AIE. We employed a previously validated GluN2B-targeted proteomic strategy that was used to identify novel signaling mechanisms altered by chronic ethanol exposure in the adult hippocampus. We collected adult hippocampal tissue (P70) from rats that had been given 2 weeks of AIE from P30-45. Tissue extracts were fractionated into synaptic and non-synaptic pools, immuno-precipitated for GluN2B, and then analyzed using proteomic methods. We detected a large number of proteins associated with GluN2B. AIE produced significant changes in the association of many proteins with GluN2B in both synaptic and non-synaptic fractions. Intriguingly the number of proteins changed in the non-synaptic fraction was double that found in the synaptic fraction. Some of these proteins include those involved in glutamate signaling cytoskeleton rearrangement, calcium signaling, and plasticity. Disruptions in these pathways may contribute to the persistent cellular and behavioral changes found in the adult hippocampus following AIE. Further, the robust change in non-synaptic proteins suggests that AIE may prime this signaling pathway for future ethanol exposures in adulthood.


Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism.

  • Abigail M Brown‎ et al.
  • The European journal of neuroscience‎
  • 2005‎

Nigrostriatal dopamine depletion disrupts striatal medium spiny neuron morphology in Parkinson's disease and modulates striatal synaptic plasticity in animal models of parkinsonism. We demonstrate that long-term nigrostriatal dopamine depletion in the rat induces evolving changes in the phosphorylation of striatal proteins critical for synaptic plasticity. Dopamine depletion increased the phosphorylation of the alpha isoform of calcium-calmodulin-dependent protein kinase II (CaMKIIalpha) at Thr286, a site associated with enhanced autonomous kinase activity, but did not alter total levels of CaMKIIalpha or other synaptic proteins. Dopamine depletion decreased CaMKIIalpha levels in postsynaptic density-enriched fractions without significant changes in other proteins. The activity of protein phosphatase 1 (PP1), a postsynaptic phosphatase that dephosphorylates CaMKII, is regulated by DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kDa). Dopamine depletion had no effect on DARPP-32 phosphorylation at Thr34, but increased DARPP-32 phosphorylation at Thr75. Levodopa administration reversed the increased phosphorylation of both CaMKIIalpha and DARPP-32. Normal ageing increased the levels of PP1(gamma1 isoform) but decreased levels of the PP1gamma1-targeting proteins spinophilin and neurabin. Elevated phosphorylations of CaMKIIalpha and DARPP-32 were maintained for up to 20 months after dopamine depletion. However, phosphorylation of the CaMKII-PP1 substrate, Ser831 in the glutamate receptor GluR1 subunit, was increased only after sustained (9-20 months) dopamine depletion. Interaction of ageing-related changes in PP1 with the dopamine depletion-induced changes in CaMKIIalpha may account for enhanced GluR1 phosphorylation only after long-term dopamine depletion. These evolving changes may impact striatal synaptic plasticity, Parkinson's disease progression and the changing efficacy and side-effects associated with dopamine replacement therapy.


Parallel purification of three catalytic subunits of the protein serine/threonine phosphatase 2A family (PP2A(C), PP4(C), and PP6(C)) and analysis of the interaction of PP2A(C) with alpha4 protein.

  • Susanne Kloeker‎ et al.
  • Protein expression and purification‎
  • 2003‎

The protein serine/threonine phosphatase (PP) type 2A family consists of three members: PP2A, PP4, and PP6. Specific rabbit and sheep antibodies corresponding to each catalytic subunit, as well as a rabbit antibody recognizing all three subunits, were utilized to examine the expression of these enzymes in select rat tissue extracts. PP2A, PP4, and PP6 catalytic subunits (PP2A(C), PP4(C), and PP6(C), respectively) were detected in all rat tissue extracts examined and exhibited some differences in their levels of expression. The expression of alpha4, an interacting protein for PP2A family members that may function downstream of the target of rapamycin (Tor), was also examined using specific alpha4 sheep antibodies. Like the phosphatase catalytic subunits, alpha4 was ubiquitously expressed with particularly high levels in the brain and thymus. All three PP2A family members, but not alpha4, bound to the phosphatase affinity resin microcystin-Sepharose. The phosphatase catalytic subunits were purified to apparent homogeneity (PP2A(C) and PP4(C)) or near homogeneity (PP6(C)) from bovine testes soluble extracts following ethanol precipitation and protein extraction. In contrast to PP2A(C), PP4(C) and PP6(C) exhibited relatively low phosphatase activity towards several substrates. Purified PP2A(C) and native PP2A in cellular extracts bound to GST-alpha4, and co-immunoprecipitated with endogenous alpha4 and ectopically expressed myc-tagged alpha4. The interaction of PP2A(C) with alpha4 was unaffected by rapamycin treatment of mammalian cells; however, protein serine/threonine phosphatase inhibitors such as okadaic acid and microcystin-LR disrupted the alpha4/PP2A complex. Together, these findings increase our understanding of the biochemistry of alpha4/phosphatase complexes and suggest that the alpha4 binding site within PP2A may include the phosphatase catalytic domain.


CaMKII associates with CaV1.2 L-type calcium channels via selected beta subunits to enhance regulatory phosphorylation.

  • Sunday A Abiria‎ et al.
  • Journal of neurochemistry‎
  • 2010‎

Calcium/calmodulin-dependent kinase II (CaMKII) facilitates L-type calcium channel (LTCC) activity physiologically, but may exacerbate LTCC-dependent pathophysiology. We previously showed that CaMKII forms stable complexes with voltage-gated calcium channel (VGCC) beta(1b) or beta(2a) subunits, but not with the beta(3) or beta(4) subunits (Grueter et al. 2008). CaMKII-dependent facilitation of Ca(V)1.2 LTCCs requires Thr498 phosphorylation in the beta(2a) subunit (Grueter et al. 2006), but the relationship of this modulation to CaMKII interactions with LTCC subunits is unknown. Here we show that CaMKII co-immunoprecipitates with forebrain LTCCs that contain Ca(V)1.2alpha(1) and beta(1) or beta(2) subunits, but is not detected in LTCC complexes containing beta(4) subunits. CaMKIIalpha can be specifically tethered to the I/II linker of Ca(V)1.2 alpha(1) subunits in vitro by the beta(1b) or beta(2a) subunits. Efficient targeting of CaMKIIalpha to the full-length Ca(V)1.2alpha(1) subunit in transfected HEK293 cells requires CaMKII binding to the beta(2a) subunit. Moreover, disruption of CaMKII binding substantially reduced phosphorylation of beta(2a) at Thr498 within the LTCC complex, without altering overall phosphorylation of Ca(V)1.2alpha(1) and beta subunits. These findings demonstrate a biochemical mechanism underlying LTCC facilitation by CaMKII.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: