2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

Neto auxiliary proteins control both the trafficking and biophysical properties of the kainate receptor GluK1.

  • Nengyin Sheng‎ et al.
  • eLife‎
  • 2015‎

Kainate receptors (KARs) are a subfamily of glutamate receptors mediating excitatory synaptic transmission and Neto proteins are recently identified auxiliary subunits for KARs. However, the roles of Neto proteins in the synaptic trafficking of KAR GluK1 are poorly understood. Here, using the hippocampal CA1 pyramidal neuron as a null background system we find that surface expression of GluK1 receptor itself is very limited and is not targeted to excitatory synapses. Both Neto1 and Neto2 profoundly increase GluK1 surface expression and also drive GluK1 to synapses. However, the regulation GluK1 synaptic targeting by Neto proteins is independent of their role in promoting surface trafficking. Interestingly, GluK1 is excluded from synapses expressing AMPA receptors and is selectively incorporated into silent synapses. Neto2, but not Neto1, slows GluK1 deactivation, whereas Neto1 speeds GluK1 desensitization and Neto2 slows desensitization. These results establish critical roles for Neto auxiliary subunits controlling KARs properties and synaptic incorporation.


The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms.

  • Salvatore Incontro‎ et al.
  • Nature communications‎
  • 2018‎

CaMKII is one of the most studied synaptic proteins, but many critical issues regarding its role in synaptic function remain unresolved. Using a CRISPR-based system to delete CaMKII and replace it with mutated forms in single neurons, we have rigorously addressed its various synaptic roles. In brief, basal AMPAR and NMDAR synaptic transmission both require CaMKIIα, but not CaMKIIβ, indicating that, even in the adult, synaptic transmission is determined by the ongoing action of CaMKIIα. While AMPAR transmission requires kinase activity, NMDAR transmission does not, implying a scaffolding role for the CaMKII protein instead. LTP is abolished in the absence of CaMKIIα and/or CaMKIIβ and with an autophosphorylation impaired CaMKIIα (T286A). With the exception of NMDAR synaptic currents, all aspects of CaMKIIα signaling examined require binding to the NMDAR, emphasizing the essential role of this receptor as a master synaptic signaling hub.


SAP102 mediates synaptic clearance of NMDA receptors.

  • Bo-Shiun Chen‎ et al.
  • Cell reports‎
  • 2012‎

Membrane-associated guanylate kinases (MAGUKs) are the major family of scaffolding proteins at the postsynaptic density. The PSD-MAGUK subfamily, which includes PSD-95, PSD-93, SAP97, and SAP102, is well accepted to be primarily involved in the synaptic anchoring of numerous proteins, including N-methyl-D-aspartate receptors (NMDARs). Notably, the synaptic targeting of NMDARs depends on the binding of the PDZ ligand on the GluN2B subunit to MAGUK PDZ domains, as disruption of this interaction dramatically decreases NMDAR surface and synaptic expression. We recently reported a secondary interaction between SAP102 and GluN2B, in addition to the PDZ interaction. Here, we identify two critical residues on GluN2B responsible for the non-PDZ binding to SAP102. Strikingly, either mutation of these critical residues or knockdown of endogenous SAP102 can rescue the defective surface expression and synaptic localization of PDZ binding-deficient GluN2B. These data reveal an unexpected, nonscaffolding role for SAP102 in the synaptic clearance of GluN2B-containing NMDARs.


The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function.

  • Wei Lu‎ et al.
  • Neuron‎
  • 2013‎

The cell-autonomous role of synaptic transmission in the regulation of neuronal structural and electrical properties is unclear. We have now employed a genetic approach to eliminate glutamatergic synaptic transmission onto individual CA1 pyramidal neurons in a mosaic fashion in vivo. Surprisingly, while electrical properties are profoundly affected in these neurons, as well as inhibitory synaptic transmission, we found little perturbation of neuronal morphology, demonstrating a functional segregation of excitatory synaptic transmission from neuronal morphological development.


Deletion of SNAP-23 results in pre-implantation embryonic lethality in mice.

  • Young Ho Suh‎ et al.
  • PloS one‎
  • 2011‎

SNARE-mediated membrane fusion is a pivotal event for a wide-variety of biological processes. SNAP-25, a neuron-specific SNARE protein, has been well-characterized and mouse embryos lacking Snap25 are viable. However, the phenotype of mice lacking SNAP-23, the ubiquitously expressed SNAP-25 homolog, remains unknown. To reveal the importance of SNAP-23 function in mouse development, we generated Snap23-null mice by homologous recombination. We were unable to obtain newborn SNAP-23-deficient mice, and analysis of pre-implantation embryos from Snap23(Δ/wt) matings revealed that Snap23-null blastocysts were dying prior to implantation at embryonic day E3.5. Thus these data reveal a critical role for SNAP-23 during embryogenesis.


Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic complex.

  • Olav Olsen‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Synapses are highly specialized intercellular junctions organized by adhesive and scaffolding molecules that align presynaptic vesicular release with postsynaptic neurotransmitter receptors. The MALS/Veli-CASK-Mint-1 complex of PDZ proteins occurs on both sides of the synapse and has the potential to link transsynaptic adhesion molecules to the cytoskeleton. In this study, we purified the MALS protein complex from brain and found liprin-alpha as a major component. Liprin proteins organize the presynaptic active zone and regulate neurotransmitter release. Fittingly, mutant mice lacking all three MALS isoforms died perinatally with difficulty breathing and impaired excitatory synaptic transmission. Excitatory postsynaptic currents were dramatically reduced in autaptic cultures from MALS triple knockout mice due to a presynaptic deficit in vesicle cycling. These findings are consistent with a model whereby the MALS-CASK-liprin-alpha complex recruits components of the synaptic release machinery to adhesive proteins of the active zone.


Molecular constituents of neuronal AMPA receptors.

  • Yuko Fukata‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Dynamic regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) underlies aspects of synaptic plasticity. Although numerous AMPAR-interacting proteins have been identified, their quantitative and relative contributions to native AMPAR complexes remain unclear. Here, we quantitated protein interactions with neuronal AMPARs by immunoprecipitation from brain extracts. We found that stargazin-like transmembrane AMPAR regulatory proteins (TARPs) copurified with neuronal AMPARs, but we found negligible binding to GRIP, PICK1, NSF, or SAP-97. To facilitate purification of neuronal AMPAR complexes, we generated a transgenic mouse expressing an epitope-tagged GluR2 subunit of AMPARs. Taking advantage of this powerful new tool, we isolated two populations of GluR2 containing AMPARs: an immature complex with the endoplasmic reticulum chaperone immunoglobulin-binding protein and a mature complex containing GluR1, TARPs, and PSD-95. These studies establish TARPs as the auxiliary components of neuronal AMPARs.


Rapid bidirectional switching of synaptic NMDA receptors.

  • Camilla Bellone‎ et al.
  • Neuron‎
  • 2007‎

Synaptic NMDA-type glutamate receptors (NMDARs) play important roles in synaptic plasticity, brain development, and pathology. In the last few years, the view of NMDARs as relatively fixed components of the postsynaptic density has changed. A number of studies have now shown that both the number of receptors and their subunit compositions can be altered. During development, the synaptic NMDARs subunit composition changes, switching from predominance of NR2B-containing to NR2A-containing receptors, but little is known about the mechanisms involved in this developmental process. Here, we report that, depending on the pattern of NMDAR activation, the subunit composition of synaptic NMDARs is under extremely rapid, bidirectional control at neonatal synapses. This switching, which is at least as rapid as that seen with AMPARs, will have immediate and dramatic consequences on the integrative capacity of the synapse.


Membrane-associated guanylate kinase dynamics reveal regional and developmental specificity of synapse stability.

  • Jonathan M Levy‎ et al.
  • The Journal of physiology‎
  • 2017‎

The membrane-associated guanylate kinase (MAGUK) family of synaptic scaffolding proteins anchor glutamate receptors at CNS synapses. MAGUK removal via RNAi-mediated knockdown in the CA1 hippocampal region in immature animals causes rapid and lasting reductions in glutamatergic transmission. In mature animals, the same manipulation has little acute effect. The hippocampal dentate gyrus, a region with ongoing adult neurogenesis, is sensitive to MAGUK loss in mature animals, behaving like an immature CA1. Over long time courses, removal of MAGUKs in CA1 causes reductions in glutamatergic transmission, indicating that synapses in mature animals require MAGUKs for anchoring glutamate receptors, but are much more stable. These results demonstrate regional and developmental control of synapse stability and suggest the existence of a sensitive period of heightened hippocampal plasticity in CA1 of pre-adolescent rodents, and in dentate gyrus throughout maturity.


Signal peptide represses GluK1 surface and synaptic trafficking through binding to amino-terminal domain.

  • Gui-Fang Duan‎ et al.
  • Nature communications‎
  • 2018‎

Kainate-type glutamate receptors play critical roles in excitatory synaptic transmission and synaptic plasticity in the brain. GluK1 and GluK2 possess fundamentally different capabilities in surface trafficking as well as synaptic targeting in hippocampal CA1 neurons. Here we find that the excitatory postsynaptic currents (EPSCs) are significantly increased by the chimeric GluK1(SPGluK2) receptor, in which the signal peptide of GluK1 is replaced with that of GluK2. Coexpression of GluK1 signal peptide completely suppresses the gain in trafficking ability of GluK1(SPGluK2), indicating that the signal peptide represses receptor trafficking in a trans manner. Furthermore, we demonstrate that the signal peptide directly interacts with the amino-terminal domain (ATD) to inhibit the synaptic and surface expression of GluK1. Thus, we have uncovered a trafficking mechanism for kainate receptors and propose that the cleaved signal peptide behaves as a ligand of GluK1, through binding with the ATD, to repress forward trafficking of the receptor.


LGI1-ADAM22-MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention.

  • Yuko Fukata‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Physiological functioning and homeostasis of the brain rely on finely tuned synaptic transmission, which involves nanoscale alignment between presynaptic neurotransmitter-release machinery and postsynaptic receptors. However, the molecular identity and physiological significance of transsynaptic nanoalignment remain incompletely understood. Here, we report that epilepsy gene products, a secreted protein LGI1 and its receptor ADAM22, govern transsynaptic nanoalignment to prevent epilepsy. We found that LGI1-ADAM22 instructs PSD-95 family membrane-associated guanylate kinases (MAGUKs) to organize transsynaptic protein networks, including NMDA/AMPA receptors, Kv1 channels, and LRRTM4-Neurexin adhesion molecules. Adam22ΔC5/ΔC5 knock-in mice devoid of the ADAM22-MAGUK interaction display lethal epilepsy of hippocampal origin, representing the mouse model for ADAM22-related epileptic encephalopathy. This model shows less-condensed PSD-95 nanodomains, disordered transsynaptic nanoalignment, and decreased excitatory synaptic transmission in the hippocampus. Strikingly, without ADAM22 binding, PSD-95 cannot potentiate AMPA receptor-mediated synaptic transmission. Furthermore, forced coexpression of ADAM22 and PSD-95 reconstitutes nano-condensates in nonneuronal cells. Collectively, this study reveals LGI1-ADAM22-MAGUK as an essential component of transsynaptic nanoarchitecture for precise synaptic transmission and epilepsy prevention.


Regulation of NMDA receptor trafficking and gating by activity-dependent CaMKIIα phosphorylation of the GluN2A subunit.

  • Xuan Ling Hilary Yong‎ et al.
  • Cell reports‎
  • 2021‎

NMDA receptor (NMDAR)-dependent Ca2+ influx underpins multiple forms of synaptic plasticity. Most synaptic NMDAR currents in the adult forebrain are mediated by GluN2A-containing receptors, which are rapidly inserted into synapses during long-term potentiation (LTP); however, the underlying molecular mechanisms remain poorly understood. In this study, we show that GluN2A is phosphorylated at Ser-1459 by Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) in response to glycine stimulation that mimics LTP in primary neurons. Phosphorylation of Ser-1459 promotes GluN2A interaction with the sorting nexin 27 (SNX27)-retromer complex, thereby enhancing the endosomal recycling of NMDARs. Loss of SNX27 or CaMKIIα function blocks the glycine-induced increase in GluN2A-NMDARs on the neuronal membrane. Interestingly, mutations of Ser-1459, including the rare S1459G human epilepsy variant, prolong the decay times of NMDAR-mediated synaptic currents in heterosynapses by increasing the duration of channel opening. These findings not only identify a critical role of Ser-1459 phosphorylation in regulating the function of NMDARs, but they also explain how the S1459G variant dysregulates NMDAR function.


A Cluster of Autism-Associated Variants on X-Linked NLGN4X Functionally Resemble NLGN4Y.

  • Thien A Nguyen‎ et al.
  • Neuron‎
  • 2020‎

Autism spectrum disorder (ASD) is more prevalent in males; however, the etiology for this sex bias is not well understood. Many mutations on X-linked cell adhesion molecule NLGN4X result in ASD or intellectual disability. NLGN4X is part of an X-Y pair, with NLGN4Y sharing ∼97% sequence homology. Using biochemistry, electrophysiology, and imaging, we show that NLGN4Y displays severe deficits in maturation, surface expression, and synaptogenesis regulated by one amino acid difference with NLGN4X. Furthermore, we identify a cluster of ASD-associated mutations surrounding the critical amino acid in NLGN4X, and these mutations phenocopy NLGN4Y. We show that NLGN4Y cannot compensate for the functional deficits observed in ASD-associated NLGN4X mutations. Altogether, our data reveal a potential pathogenic mechanism for male bias in NLGN4X-associated ASD.


GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons.

  • Xinglong Gu‎ et al.
  • Nature communications‎
  • 2016‎

Regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is a key mechanism for synaptic plasticity. In the brain, AMPARs assemble with a number of auxiliary subunits, including TARPs, CNIHs and CKAMP44, which are important for AMPAR forward trafficking to synapses. Here we report that the membrane protein GSG1L negatively regulates AMPAR-mediated synaptic transmission. Overexpression of GSG1L strongly suppresses, and GSG1L knockout (KO) enhances, AMPAR-mediated synaptic transmission. GSG1L-dependent regulation of AMPAR synaptic transmission relies on the first extracellular loop domain and its carboxyl-terminus. GSG1L also speeds up AMPAR deactivation and desensitization in hippocampal CA1 neurons, in contrast to the effects of TARPs and CNIHs. Furthermore, GSG1L association with AMPARs inhibits CNIH2-induced slowing of the receptors in heterologous cells. Finally, GSG1L KO rats have deficits in LTP and show behavioural abnormalities in object recognition tests. These data demonstrate that GSG1L represents a new class of auxiliary subunit with distinct functional properties for AMPARs.


Dimerization of postsynaptic neuroligin drives synaptic assembly via transsynaptic clustering of neurexin.

  • Seth L Shipman‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2012‎

The transsynaptic complex of neuroligin (NLGN) and neurexin forms a physical connection between pre- and postsynaptic neurons that occurs early in the course of new synapse assembly. Both neuroligin and neurexin have, indeed, been proposed to exhibit active, instructive roles in the formation of synapses. However, the process by which these instructive roles play out during synaptogenesis is not well understood. Here, we examine one aspect of postsynaptic neuroligin with regard to its synaptogenic properties: its basal state as a constitutive dimer. We show that dimerization is required for the synaptogenic properties of neuroligin and likely serves to induce presynaptic differentiation via a transsynaptic clustering of neurexin. Further, we introduce chemically inducible, exogenous dimerization domains to the neuroligin molecule, effectively bestowing chemical control of neuroligin dimerization. This allows us to identify the acute requirements of neuroligin dimerization by chemically manipulating the monomeric-to-dimeric conversion of neuroligin. Based on the results of the inducible dimerization experiments, we propose a model in which dimerized neuroligin induces the mechanical clustering of presynaptic molecules as part of a requisite step in the coordinated assembly of a chemical synapse.


CaMKII phosphorylation of neuroligin-1 regulates excitatory synapses.

  • Michael A Bemben‎ et al.
  • Nature neuroscience‎
  • 2014‎

Neuroligins are postsynaptic cell adhesion molecules that are important for synaptic function through their trans-synaptic interaction with neurexins (NRXNs). The localization and synaptic effects of neuroligin-1 (NL-1, also called NLGN1) are specific to excitatory synapses with the capacity to enhance excitatory synapses dependent on synaptic activity or Ca(2+)/calmodulin kinase II (CaMKII). Here we report that CaMKII robustly phosphorylates the intracellular domain of NL-1. We show that T739 is the dominant CaMKII site on NL-1 and is phosphorylated in response to synaptic activity in cultured rodent neurons and sensory experience in vivo. Furthermore, a phosphodeficient mutant (NL-1 T739A) reduces the basal and activity-driven surface expression of NL-1, leading to a reduction in neuroligin-mediated excitatory synaptic potentiation. To the best of our knowledge, our results are the first to demonstrate a direct functional interaction between CaMKII and NL-1, two primary components of excitatory synapses.


SynDIG1 promotes excitatory synaptogenesis independent of AMPA receptor trafficking and biophysical regulation.

  • Kathryn L Lovero‎ et al.
  • PloS one‎
  • 2013‎

AMPA receptors-mediators of fast, excitatory transmission and synaptic plasticity in the brain-achieve great functional diversity through interaction with different auxiliary subunits, which alter both the trafficking and biophysical properties of these receptors. In the past several years an abundance of new AMPA receptor auxiliary subunits have been identified, adding astounding variety to the proteins known to directly bind and modulate AMPA receptors. SynDIG1 was recently identified as a novel AMPA receptor interacting protein that directly binds to the AMPA receptor subunit GluA2 in heterologous cells. Functionally, SynDIG1 was found to regulate the strength and density of AMPA receptor containing synapses in hippocampal neurons, though the way in which SynDIG1 exerts these effects remains unknown. Here, we aimed to determine if SynDIG1 acts as a traditional auxiliary subunit, directly regulating the function and localization of AMPA receptors in the rat hippocampus. We find that, unlike any of the previously characterized AMPA receptor auxiliary subunits, SynDIG1 expression does not impact AMPA receptor gating, pharmacology, or surface trafficking. Rather, we show that SynDIG1 regulates the number of functional excitatory synapses, altering both AMPA and NMDA receptor mediated transmission. Our findings suggest that SynDIG1 is not a typical auxiliary subunit to AMPA receptors, but instead is a protein critical to excitatory synaptogenesis.


Corequirement of PICK1 binding and PKC phosphorylation for stable surface expression of the metabotropic glutamate receptor mGluR7.

  • Young Ho Suh‎ et al.
  • Neuron‎
  • 2008‎

The presynaptic metabotropic glutamate receptor (mGluR) mGluR7 modulates excitatory neurotransmission by regulating neurotransmitter release and plays a critical role in certain forms of synaptic plasticity. Although the dynamic regulation of mGluR7 surface expression governs a form of metaplasticity in the hippocampus, little is known about the molecular mechanisms regulating mGluR7 trafficking. We now show that mGluR7 surface expression is stabilized by both PKC phosphorylation and by receptor binding to the PDZ domain-containing protein PICK1. Phosphorylation of mGluR7 on serine 862 (S862) inhibits CaM binding, thereby increasing mGluR7 surface expression and receptor binding to PICK1. Furthermore, in mice lacking PICK1, PKC-dependent increases in mGluR7 phosphorylation and surface expression are diminished, and mGluR7-dependent plasticity at mossy fiber-interneuron hippocampal synapses is impaired. These data support a model in which PICK1 binding and PKC phosphorylation act together to stabilize mGluR7 on the cell surface in vivo.


Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses.

  • Quynh-Anh Nguyen‎ et al.
  • eLife‎
  • 2016‎

Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapses in rat CA1 depends on the presence of NLGN2 and identified a domain in the extracellular region that accounted for this functional difference between NLGN2 and 3 specifically at inhibitory synapses. We further show that the presence of a cytoplasmic tail (c-tail) is indispensible, and identified two domains in the c-tail that are necessary for NLGN function at inhibitory synapses. These domains point to a gephyrin-dependent mechanism that is disrupted by an autism-associated mutation at R705 and a gephyrin-independent mechanism reliant on a putative phosphorylation site at S714. Our work highlights unique and separate roles for the extracellular and intracellular regions in specifying and carrying out NLGN function respectively.


DLG2 variants in patients with pubertal disorders.

  • Youn Hee Jee‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2020‎

Impaired function of gonadotropin-releasing hormone (GnRH) neurons can cause a phenotypic spectrum ranging from delayed puberty to isolated hypogonadotropic hypogonadism (IHH). We sought to identify a new genetic etiology for these conditions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: