Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

A Wave of Regulatory T Cells into Neonatal Skin Mediates Tolerance to Commensal Microbes.

  • Tiffany C Scharschmidt‎ et al.
  • Immunity‎
  • 2015‎

The skin is a site of constant dialog between the immune system and commensal bacteria. However, the molecular mechanisms that allow us to tolerate the presence of skin commensals without eliciting destructive inflammation are unknown. Using a model system to study the antigen-specific response to S. epidermidis, we demonstrated that skin colonization during a defined period of neonatal life was required for establishing immune tolerance to commensal microbes. This crucial window was characterized by an abrupt influx of highly activated regulatory T (Treg) cells into neonatal skin. Selective inhibition of this Treg cell wave completely abrogated tolerance. Thus, the host-commensal relationship in the skin relied on a unique Treg cell population that mediated tolerance to bacterial antigens during a defined developmental window. This suggests that the cutaneous microbiome composition in neonatal life is crucial in shaping adaptive immune responses to commensals, and disrupting these interactions might have enduring health implications.


Treg-Cell Control of a CXCL5-IL-17 Inflammatory Axis Promotes Hair-Follicle-Stem-Cell Differentiation During Skin-Barrier Repair.

  • Anubhav N Mathur‎ et al.
  • Immunity‎
  • 2019‎

Restoration of barrier-tissue integrity after injury is dependent on the function of immune cells and stem cells (SCs) residing in the tissue. In response to skin injury, hair-follicle stem cells (HFSCs), normally poised for hair generation, are recruited to the site of injury and differentiate into cells that repair damaged epithelium. We used a SC fate-mapping approach to examine the contribution of regulatory T (Treg) cells to epidermal-barrier repair after injury. Depletion of Treg cells impaired skin-barrier regeneration and was associated with a Th17 inflammatory response and failed HFSC differentiation. In this setting, damaged epithelial cells preferentially expressed the neutrophil chemoattractant CXCL5, and blockade of CXCL5 or neutrophil depletion restored barrier function and SC differentiation after epidermal injury. Thus, Treg-cell regulation of localized inflammation enables HFSC differentiation and, thereby, skin-barrier regeneration, with implications for the maintenance and repair of other barrier tissues.


Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo.

  • Lucy S K Walker‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

The failure of CD25+ regulatory T cells (Tregs) to proliferate after T cell receptor (TCR) stimulation in vitro has lead to their classification as naturally anergic. Here we use Tregs expressing a transgenic TCR to show that despite anergy in vitro, Tregs proliferate in response to immunization in vivo. Tregs also proliferate and accumulate locally in response to transgenically expressed tissue antigen whereas their CD25- counterparts are depleted at such sites. Collectively, these data suggest that the anergic state that characterizes CD25+ Tregs in vitro may not accurately reflect their responsiveness in vivo. These observations support a model in which Treg population dynamics are shaped by the local antigenic environment.


Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease.

  • Jens Lohr‎ et al.
  • The Journal of experimental medicine‎
  • 2006‎

To explore the interactions between regulatory T cells and pathogenic effector cytokines, we have developed a model of a T cell-mediated systemic autoimmune disorder resembling graft-versus-host disease. The cytokine responsible for tissue inflammation in this disorder is interleukin (IL)-17, whereas interferon (IFN)-gamma produced by Th1 cells has a protective effect in this setting. Because of the interest in potential therapeutic approaches utilizing transfer of regulatory T cells and inhibition of the IL-2 pathway, we have explored the roles of these in the systemic disease. We demonstrate that the production of IL-17 and tissue infiltration by IL-17-producing cells occur and are even enhanced in the absence of IL-2. Regulatory T cells favor IL-17 production but prevent the disease when administered early in the course by suppressing expansion of T cells. Thus, the pathogenic or protective effects of cytokines and the therapeutic capacity of regulatory T cells are crucially dependent on the timing and the nature of the disease.


Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7R alpha-expressing cells.

  • Hans Dooms‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

The common gamma chain cytokines interleukin (IL)-2 and IL-7 are important regulators of T cell homeostasis. Although IL-2 is implicated in the acute phase of the T cell response, IL-7 is important for memory T cell survival. We asked whether regulated responsiveness to these growth factors is determined by temporal expression of the cytokine-specific IL-2 receptor (R) alpha and IL-7Ralpha chains. We demonstrate that IL-2Ralpha is expressed early after priming in T cell receptor-transgenic CD4(+) T cells, whereas IL-7Ralpha expression is lost. In the later stage of the response, IL-7Ralpha is reexpressed while IL-2Ralpha expression is silenced. This reciprocal pattern of IL-2Ralpha/IL-7Ralpha expression is disturbed when CD4(+) T cells are primed in the absence of IL-2 signals. Primed IL-2(-/-) or CD25(-/-) (IL-2Ralpha(-/-)) CD4(+) T cells, despite showing normal induction of activation markers and cell division, fail to reexpress IL-7Ralpha late in the response. Because the generation of CD4(+) memory T cells is dependent on IL-7-IL-7Ralpha interactions, primed IL-2(-/-) or CD25(-/-) CD4(+) T cells develop poorly into long-lived memory cells. Retrovirus-mediated expression of IL-7Ralpha in IL-2(-/-) T cells restores their capacity for long-term survival. These results identify IL-2 as a factor regulating IL-7Ralpha expression and, consequently, memory T cell homeostasis in vivo.


Interferon gamma is required for activation-induced death of T lymphocytes.

  • Yosef Refaeli‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

The effector cytokine interferon gamma (IFN-gamma) may play a role in T cell homeostasis. We have examined the requirement for IFN-gamma in one mechanism that regulates T cell expansion and survival, activation-induced cell death (AICD). CD4(+) T cells lacking IFN-gamma or the Stat1 transcription factor are resistant to AICD. IFN-gamma is required for the production of caspases, and retrovirus-mediated expression of caspase-8 restores the sensitivity of Stat1-deficient T cells to AICD. In vitro, IFN-gamma limits the expansion of T cells that are stimulated through their antigen receptors. Thus, IFN-gamma may function to control the expansion and persistence of T cells by promoting caspase-8-dependent apoptosis.


The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases.

  • David Klatzmann‎ et al.
  • Nature reviews. Immunology‎
  • 2015‎

Depletion of regulatory T (TReg) cells in otherwise healthy individuals leads to multi-organ autoimmune disease and inflammation. This indicates that in a normal immune system, there are self-specific effector T cells that are ready to attack normal tissue if they are not restrained by TReg cells. The data imply that there is a balance between effector T cells and TReg cells in health and suggest a therapeutic potential of TReg cells in diseases in which this balance is altered. Proof-of-concept clinical trials, now supported by robust mechanistic studies, have shown that low-dose interleukin-2 specifically expands and activates TReg cell populations and thus can control autoimmune diseases and inflammation.


A resource for the conditional ablation of microRNAs in the mouse.

  • Chong Yon Park‎ et al.
  • Cell reports‎
  • 2012‎

The importance of miRNAs during development and disease processes is well established. However, most studies have been done in cells or with patient tissues, and therefore the physiological roles of miRNAs are not well understood. To unravel in vivo functions of miRNAs, we have generated conditional, reporter-tagged knockout-first mice for numerous evolutionarily conserved miRNAs. Here, we report the generation of 162 miRNA targeting vectors, 64 targeted ES cell lines, and 46 germline-transmitted miRNA knockout mice. In vivo lacZ reporter analysis in 18 lines revealed highly tissue-specific expression patterns and their miRNA expression profiling matched closely with published expression data. Most miRNA knockout mice tested were viable, supporting a mechanism by which miRNAs act redundantly with other miRNAs or other pathways. These data and collection of resources will be of value for the in vivo dissection of miRNA functions in mouse models.


Commensal Microbes and Hair Follicle Morphogenesis Coordinately Drive Treg Migration into Neonatal Skin.

  • Tiffany C Scharschmidt‎ et al.
  • Cell host & microbe‎
  • 2017‎

Regulatory T cells (Tregs) are required to establish immune tolerance to commensal microbes. Tregs accumulate abruptly in the skin during a defined window of postnatal tissue development. However, the mechanisms mediating Treg migration to neonatal skin are unknown. Here we show that hair follicle (HF) development facilitates the accumulation of Tregs in neonatal skin and that upon skin entry these cells localize to HFs, a primary reservoir for skin commensals. Further, germ-free neonates had reduced skin Tregs indicating that commensal microbes augment Treg accumulation. We identified Ccl20 as a HF-derived, microbiota-dependent chemokine and found its receptor, Ccr6, to be preferentially expressed by Tregs in neonatal skin. The Ccl20-Ccr6 pathway mediated Treg migration in vitro and in vivo. Thus, HF morphogenesis, commensal microbe colonization, and local chemokine production work in concert to recruit Tregs into neonatal skin, thereby establishing this tissue Treg niche early in life.


Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.

  • Niwa Ali‎ et al.
  • Cell‎
  • 2017‎

The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of Tregs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs.


Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen.

  • Birgit Knoechel‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

Transfer of naive antigen-specific CD4(+) T cells into lymphopenic mice that express an endogenous antigen as a systemic, secreted protein results in severe autoimmunity resembling graft-versus-host disease. T cells that respond to this endogenous antigen develop into effector cells that cause the disease. Recovery from this disease is associated with the subsequent generation of FoxP3(+)CD25(+) regulatory cells in the periphery. Both pathogenic effector cells and protective regulatory cells develop from the same antigen-specific T cell population after activation, and their generation may occur in parallel or sequentially. Interleukin (IL)-2 plays a dual role in this systemic T cell reaction. In the absence of IL-2, the acute disease is mild because of reduced T cell effector function, but a chronic and progressive disease develops late and is associated with a failure to generate FoxP3(+) regulatory T (T reg) cells in the periphery. Thus, a peripheral T cell reaction to a systemic antigen goes through a phase of effector cell-mediated pathology followed by T reg cell-mediated recovery, and both require the growth factor IL-2.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: